Searched for: in-biosketch:yes
person:galati01
Pre-trauma predictors of severe psychiatric comorbidity 5 years following traumatic experiences
Gradus, Jaimie L; Rosellini, Anthony J; Szentkúti, Péter; Horváth-Puhó, Erzsébet; Smith, Meghan L; Galatzer-Levy, Isaac; Lash, Timothy L; Galea, Sandro; Schnurr, Paula P; Sørensen, Henrik T
BACKGROUND:A minority of persons who have traumatic experiences go on to develop post-traumatic stress disorder (PTSD), leading to interest in who is at risk for psychopathology after these experiences. Complicating this effort is the observation that post-traumatic psychopathology is heterogeneous. The goal of this nested case-control study was to identify pre-trauma predictors of severe post-traumatic psychiatric comorbidity, using data from Danish registries. METHODS:The source population for this study was the population of Denmark from 1994 through 2016. Cases had received three or more psychiatric diagnoses (across all ICD-10 categories) within 5 years of a traumatic experience (n = 20 361); controls were sampled from the parent cohort using risk-set sampling (n = 81 444). Analyses were repeated in samples stratified by pre-trauma psychiatric diagnoses. We used machine learning methods (classification and regression trees and random forest) to determine the important predictors of severe post-trauma psychiatric comorbidity from among hundreds of pre-trauma predictor variables spanning demographic and social variables, psychiatric and somatic diagnoses and filled medication prescriptions. RESULTS:In the full sample, pre-trauma psychiatric diagnoses (e.g. stress disorders, alcohol-related disorders, personality disorders) were the most important predictors of severe post-trauma psychiatric comorbidity. Among persons with no pre-trauma psychiatric diagnoses, demographic and social variables (e.g. marital status), type of trauma, medications used primarily to treat psychiatric symptomatology, anti-inflammatory medications and gastrointestinal distress were important to prediction. Results among persons with pre-trauma psychiatric diagnoses were consistent with the overall sample. CONCLUSIONS:This study builds on the understanding of pre-trauma factors that predict psychopathology following traumatic experiences, by examining a broad range of predictors of post-trauma psychopathology and comorbidity beyond PTSD.
PMID: 35179599
ISSN: 1464-3685
CID: 5175762
Associations among civilian mild traumatic brain injury with loss of consciousness, posttraumatic stress disorder symptom trajectories, and structural brain volumetric data
Kosaraju, Siddhartha; Galatzer-Levy, Isaac; Schultebraucks, Katharina; Winters, Sterling; Hinrichs, Rebecca; Reddi, Preethi J; Maples-Keller, Jessica L; Hudak, Lauren; Michopoulos, Vasiliki; Jovanovic, Tanja; Ressler, Kerry J; Allen, Jason W; Stevens, Jennifer S
Posttraumatic stress disorder (PTSD) is prevalent and associated with significant morbidity. Mild traumatic brain injury (mTBI) concurrent with psychiatric trauma may be associated with PTSD. Prior studies of PTSD-related structural brain alterations have focused on military populations. The current study examined correlations between PTSD, acute mTBI, and structural brain alterations longitudinally in civilian patients (N = 504) who experienced a recent Criterion A traumatic event. Participants who reported loss of consciousness (LOC) were characterized as having mTBI; all others were included in the control group. PTSD symptoms were assessed at enrollment and over the following year; a subset of participants (n = 89) underwent volumetric brain MRI (M = 53 days posttrauma). Classes of PTSD symptom trajectories were modeled using latent growth mixture modeling. Associations between PTSD symptom trajectories and cortical thicknesses or subcortical volumes were assessed using a moderator-based regression. mTBI with LOC during trauma was positively correlated with the likelihood of developing a chronic PTSD symptom trajectory. mTBI showed significant interactions with cortical thickness in the rostral anterior cingulate cortex (rACC) in predicting PTSD symptoms, r = .461-.463. Bilateral rACC thickness positively predicted PTSD symptoms but only among participants who endorsed LOC, p < .001. The results demonstrate positive correlations between mTBI with LOC and PTSD symptom trajectories, and findings related to mTBI with LOC and rACC thickness interactions in predicting subsequent chronic PTSD symptoms suggest the importance of further understanding the role of mTBI in the context of PTSD to inform intervention and risk stratification.
PMID: 35776892
ISSN: 1573-6598
CID: 5281472
Using Danish national registry data to understand psychopathology following potentially traumatic experiences
Gradus, Jaimie L; Rosellini, Anthony J; Szentkúti, Péter; Horváth-Puhó, Erzsébet; Smith, Meghan L; Galatzer-Levy, Isaac; Lash, Timothy L; Galea, Sandro; Schnurr, Paula P; Sørensen, Henrik T
Research on posttraumatic psychopathology has focused primarily on posttraumatic stress disorder (PTSD); other posttraumatic psychiatric diagnoses are less well documented. The present study aimed to (a) develop a methodology to derive a cohort of individuals who experienced potentially traumatic events (PTEs) from registry-based data and (b) examine the risk of psychopathology within 5 years of experiencing a PTE. Using data from Danish national registries, we created a cohort of individuals with no age restrictions (range: 0-108 years) who experienced at least one of eight possible PTEs between 1994 and 2016 (N = 1,406,637). We calculated the 5-year incidence of nine categories of ICD-10 psychiatric disorders among this cohort and examined standardized morbidity ratios (SMRs) comparing the incidence of psychopathology in this group to the incidence in a nontraumatic stressor cohort (i.e., nonsuicide death of a relative; n = 423,270). Stress disorders (2.5%), substance use disorders (4.1%), and depressive disorders (3.0%) were the most common diagnoses following PTEs. Overall, the SMRs for the associations between any PTE and psychopathology varied from 1.9, 95% CI [1.9, 2.0], for stress disorders to 5.2, 95% CI [5.1. 5.3], for personality disorders. All PTEs except pregnancy-related trauma were associated with all forms of psychopathology. Associations were consistent regardless of whether a stress disorder was present. Traumatic experiences have a broad impact on psychiatric health. The present findings demonstrate one approach to capturing trauma exposure in medical record registry data. Increased traumatic experience characterization across studies will help improve the field's understanding of posttraumatic psychopathology.
PMID: 35084778
ISSN: 1573-6598
CID: 5154702
Predicting non-response to multimodal day clinic treatment in severely impaired depressed patients: a machine learning approach
Vetter, Johannes Simon; Schultebraucks, Katharina; Galatzer-Levy, Isaac; Boeker, Heinz; Brühl, Annette; Seifritz, Erich; Kleim, Birgit
A considerable number of depressed patients do not respond to treatment. Accurate prediction of non-response to routine clinical care may help in treatment planning and improve results. A longitudinal sample of N = 239 depressed patients was assessed at admission to multi-modal day clinic treatment, after six weeks, and at discharge. First, patient's treatment response was modelled by identifying longitudinal trajectories using the Hamilton Depression Rating Scale (HDRS-17). Then, individual items of the HDRS-17 at admission as well as individual patient characteristics were entered as predictors of response/non-response trajectories into the binary classification model (eXtremeGradient Boosting; XGBoost). The model was evaluated on a hold-out set and explained in human-interpretable form by SHapley Additive explanation (SHAP) values. The prediction model yielded a multi-class AUC = 0.80 in the hold-out set. The predictive power for the binary classification yielded an AUC = 0.83 (sensitivity = .80, specificity = .77). Most relevant predictors for non-response were insomnia symptoms, younger age, anxiety symptoms, depressed mood, being unemployed, suicidal ideation and somatic symptoms of depressive disorder. Non-responders to routine treatment for depression can be identified and screened for potential next-generation treatments. Such predictors may help personalize treatment and improve treatment response.
PMCID:8971434
PMID: 35361809
ISSN: 2045-2322
CID: 5201372
Facial and Vocal Markers of Schizophrenia Measured Using Remote Smartphone Assessments: Observational Study
Abbas, Anzar; Hansen, Bryan J; Koesmahargyo, Vidya; Yadav, Vijay; Rosenfield, Paul J; Patil, Omkar; Dockendorf, Marissa F; Moyer, Matthew; Shipley, Lisa A; Perez-Rodriguez, M Mercedez; Galatzer-Levy, Isaac R
BACKGROUND:Machine learning-based facial and vocal measurements have demonstrated relationships with schizophrenia diagnosis and severity. Demonstrating utility and validity of remote and automated assessments conducted outside of controlled experimental or clinical settings can facilitate scaling such measurement tools to aid in risk assessment and tracking of treatment response in populations that are difficult to engage. OBJECTIVE:This study aimed to determine the accuracy of machine learning-based facial and vocal measurements acquired through automated assessments conducted remotely through smartphones. METHODS:Measurements of facial and vocal characteristics including facial expressivity, vocal acoustics, and speech prevalence were assessed in 20 patients with schizophrenia over the course of 2 weeks in response to two classes of prompts previously utilized in experimental laboratory assessments: evoked prompts, where subjects are guided to produce specific facial expressions and speech; and spontaneous prompts, where subjects are presented stimuli in the form of emotionally evocative imagery and asked to freely respond. Facial and vocal measurements were assessed in relation to schizophrenia symptom severity using the Positive and Negative Syndrome Scale. RESULTS:Vocal markers including speech prevalence, vocal jitter, fundamental frequency, and vocal intensity demonstrated specificity as markers of negative symptom severity, while measurement of facial expressivity demonstrated itself as a robust marker of overall schizophrenia symptom severity. CONCLUSIONS:Established facial and vocal measurements, collected remotely in schizophrenia patients via smartphones in response to automated task prompts, demonstrated accuracy as markers of schizophrenia symptom severity. Clinical implications are discussed.
PMID: 35060906
ISSN: 2561-326x
CID: 5131962
Predicting Sex-Specific Non-Fatal Suicide Attempt Risk Using Machine Learning and Data from Danish National Registries
Gradus, Jaimie L; Rosellini, Anthony J; Horváth-Puhó, Erzsébet; Jiang, Tammy; Street, Amy E; Galatzer-Levy, Isaac; Lash, Timothy L; Sørensen, Henrik T
Suicide attempts are a leading cause of injury globally. Accurate prediction of suicide attempts may offer opportunities for prevention. This case-cohort study used machine learning to examine sex-specific risk profiles for suicide attempts in Danish nationwide registry data. Cases were all persons who made a non-fatal suicide attempt between 1995 and 2015 (n = 22,974); the subcohort was a 5% random sample of the population at risk on January 1, 1995 (n = 265,183). We developed sex-stratified classification trees and random forests using 1,458 predictors including demographics, family histories, psychiatric and physical health diagnoses, surgery, and prescribed medications. We found that substance use disorders/treatment, prescribed psychiatric medications, previous poisoning diagnoses, and stress disorders were important factors for predicting suicide attempts among men and women. Individuals in the top 5% of predicted risk accounted for 44.7% of all suicide attempts among men and 43.2% of all attempts among women. Our findings illuminate novel risk factors and interactions that are most predictive of non-fatal suicide attempts, while consistency between our findings and previous work in this area adds to the call to move machine learning suicide research towards the examination of high-risk subpopulations.
PMID: 33877265
ISSN: 1476-6256
CID: 4889102
Transcriptome-wide association study of post-trauma symptom trajectories identified GRIN3B as a potential biomarker for PTSD development
Lori, Adriana; Schultebraucks, Katharina; Galatzer-Levy, Isaac; Daskalakis, Nikolaos P; Katrinli, Seyma; Smith, Alicia K; Myers, Amanda J; Richholt, Ryan; Huentelman, Matthew; Guffanti, Guia; Wuchty, Stefan; Gould, Felicia; Harvey, Philip D; Nemeroff, Charles B; Jovanovic, Tanja; Gerasimov, Ekaterina S; Maples-Keller, Jessica L; Stevens, Jennifer S; Michopoulos, Vasiliki; Rothbaum, Barbara O; Wingo, Aliza P; Ressler, Kerry J
Biomarkers that predict symptom trajectories after trauma can facilitate early detection or intervention for posttraumatic stress disorder (PTSD) and may also advance our understanding of its biology. Here, we aimed to identify trajectory-based biomarkers using blood transcriptomes collected in the immediate aftermath of trauma exposure. Participants were recruited from an Emergency Department in the immediate aftermath of trauma exposure and assessed for PTSD symptoms at baseline, 1, 3, 6, and 12 months. Three empirical symptom trajectories (chronic-PTSD, remitting, and resilient) were identified in 377 individuals based on longitudinal symptoms across four data points (1, 3, 6, and 12 months), using latent growth mixture modeling. Blood transcriptomes were examined for association with longitudinal symptom trajectories, followed by expression quantitative trait locus analysis. GRIN3B and AMOTL1 blood mRNA levels were associated with chronic vs. resilient post-trauma symptom trajectories at a transcriptome-wide significant level (N = 153, FDR-corrected p value = 0.0063 and 0.0253, respectively). We identified four genetic variants that regulate mRNA blood expression levels of GRIN3B. Among these, GRIN3B rs10401454 was associated with PTSD in an independent dataset (N = 3521, p = 0.04). Examination of the BrainCloud and GTEx databases revealed that rs10401454 was associated with brain mRNA expression levels of GRIN3B. While further replication and validation studies are needed, our data suggest that GRIN3B, a glutamate ionotropic receptor NMDA type subunit-3B, may be involved in the manifestation of PTSD. In addition, the blood mRNA level of GRIN3B may be a promising early biomarker for the PTSD manifestation and development.
PMID: 34188182
ISSN: 1740-634x
CID: 4926512
Discriminating Heterogeneous Trajectories of Resilience and Depression After Major Life Stressors Using Polygenic Scores
Schultebraucks, Katharina; Choi, Karmel W; Galatzer-Levy, Isaac R; Bonanno, George A
Importance/UNASSIGNED:Major life stressors, such as loss and trauma, increase the risk of depression. It is known that individuals show heterogeneous trajectories of depressive symptoms following major life stressors, including chronic depression, recovery, and resilience. Although common genetic variation has been associated with depression risk, genomic factors that could help discriminate trajectories of risk vs resilience following adversity have not been identified. Objective/UNASSIGNED:To assess the discriminatory accuracy of a deep neural net combining joint information from 21 psychiatric and health-related multiple polygenic scores (PGSs) for discriminating resilience vs other longitudinal symptom trajectories with use of longitudinal, genetically informed data on adults exposed to major life stressors. Design, Setting, and Participants/UNASSIGNED:The Health and Retirement Study is a longitudinal panel cohort study in US citizens older than 50 years, with data being collected once every 2 years between 1992 and 2010. A total of 2071 participants who were of European ancestry with available depressive symptom trajectory information after experiencing an index depressogenic major life stressor were included. Latent growth mixture modeling identified heterogeneous trajectories of depressive symptoms before and after major life stressors, including stable low symptoms (ie, resilience), as well as improving, emergent, and preexisting/chronic symptom patterns. Twenty-one PGSs were examined as factors distinctively associated with these heterogeneous trajectories. Local interpretable model-agnostic explanations were applied to examine PGSs associated with each trajectory. Data were analyzed using the DNN model from June to July 2020. Exposures/UNASSIGNED:Development of depression and resilience were examined in older adults after a major life stressor, such as bereavement, divorce, and job loss, or major health events, such as myocardial infarction and cancer. Main Outcomes and Measures/UNASSIGNED:Discriminatory accuracy of a deep neural net model trained for the multinomial classification of 4 distinct trajectories of depressive symptoms (Center for Epidemiologic Studies-Depression scale) based on 21 PGSs using supervised machine learning. Results/UNASSIGNED:Of the 2071 participants, 1329 were women (64.2%); mean (SD) age was 55.96 (8.52) years. Of these, 1638 (79.1%) were classified as resilient, 160 (7.75) in recovery (improving), 159 (7.7%) with emerging depression, and 114 (5.5%) with preexisting/chronic depression symptoms. Deep neural nets distinguished these 4 trajectories with high discriminatory accuracy (multiclass micro-average area under the curve, 0.88; 95% CI, 0.87-0.89; multiclass macro-average area under the curve, 0.86; 95% CI, 0.85-0.87). Discriminatory accuracy was highest for preexisting/chronic depression (AUC 0.93), followed by emerging depression (AUC 0.88), recovery (AUC 0.87), resilience (AUC 0.75). Conclusions and Relevance/UNASSIGNED:The results of the longitudinal cohort study suggest that multivariate PGS profiles provide information to accurately distinguish between heterogeneous stress-related risk and resilience phenotypes.
PMID: 33787853
ISSN: 2168-6238
CID: 4830852
Validation of Visual and Auditory Digital Markers of Suicidality in Acutely Suicidal Psychiatric Inpatients: Proof-of-Concept Study
Galatzer-Levy, Isaac; Abbas, Anzar; Ries, Anja; Homan, Stephanie; Sels, Laura; Koesmahargyo, Vidya; Yadav, Vijay; Colla, Michael; Scheerer, Hanne; Vetter, Stefan; Seifritz, Erich; Scholz, Urte; Kleim, Birgit
BACKGROUND:Multiple symptoms of suicide risk have been assessed based on visual and auditory information, including flattened affect, reduced movement, and slowed speech. Objective quantification of such symptomatology from novel data sources can increase the sensitivity, scalability, and timeliness of suicide risk assessment. OBJECTIVE:We aimed to examine measurements extracted from video interviews using open-source deep learning algorithms to quantify facial, vocal, and movement behaviors in relation to suicide risk severity in recently admitted patients following a suicide attempt. METHODS:We utilized video to quantify facial, vocal, and movement markers associated with mood, emotion, and motor functioning from a structured clinical conversation in 20 patients admitted to a psychiatric hospital following a suicide risk attempt. Measures were calculated using open-source deep learning algorithms for processing facial expressivity, head movement, and vocal characteristics. Derived digital measures of flattened affect, reduced movement, and slowed speech were compared to suicide risk with the Beck Scale for Suicide Ideation controlling for age and sex, using multiple linear regression. RESULTS:=0.32). CONCLUSIONS:Digital measurements of facial affect, movement, and speech prevalence demonstrated strong effect sizes and linear associations with the severity of suicidal ideation.
PMID: 34081022
ISSN: 1438-8871
CID: 4900752
Forecasting individual risk for long-term Posttraumatic Stress Disorder in emergency medical settings using biomedical data: A machine learning multicenter cohort study
Schultebraucks, Katharina; Sijbrandij, Marit; Galatzer-Levy, Isaac; Mouthaan, Joanne; Olff, Miranda; van Zuiden, Mirjam
The necessary requirement of a traumatic event preceding the development of Posttraumatic Stress Disorder, theoretically allows for administering preventive and early interventions in the early aftermath of such events. Machine learning models including biomedical data to forecast PTSD outcome after trauma are highly promising for detection of individuals most in need of such interventions. In the current study, machine learning was applied on biomedical data collected within 48 h post-trauma to forecast individual risk for long-term PTSD, using a multinominal approach including the full spectrum of common PTSD symptom courses within one prognostic model for the first time. N = 417 patients (37.2% females; mean age 46.09 ± 15.88) admitted with (suspected) serious injury to two urban Academic Level-1 Trauma Centers were included. Routinely collected biomedical information (endocrine measures, vital signs, pharmacotherapy, demographics, injury and trauma characteristics) upon ED admission and subsequent 48 h was used. Cross-validated multi-nominal classification of longitudinal self-reported symptom severity (IES-R) over 12 months and bimodal classification of clinician-rated PTSD diagnosis (CAPS-IV) at 12 months post-trauma was performed using extreme Gradient Boosting and evaluated on hold-out sets. SHapley Additive exPlanations (SHAP) values were used to explain the derived models in human-interpretable form. Good prediction of longitudinal PTSD symptom trajectories (multiclass AUC = 0.89) and clinician-rated PTSD at 12 months (AUC = 0.89) was achieved. Most relevant prognostic variables to forecast both multinominal and dichotomous PTSD outcomes included acute endocrine and psychophysiological measures and hospital-prescribed pharmacotherapy. Thus, individual risk for long-term PTSD was accurately forecasted from biomedical information routinely collected within 48 h post-trauma. These results facilitate future targeted preventive interventions by enabling future early risk detection and provide further insights into the complex etiology of PTSD.
PMCID:7843920
PMID: 33553513
ISSN: 2352-2895
CID: 4779312