Searched for: in-biosketch:yes
person:gey01
In Vivo Detection of Age-Related Tortuous Cerebral Small Vessels using Ferumoxytol-enhanced 7T MRI
Sun, Zhe; Li, Chenyang; Wisniewski, Thomas W; Haacke, E Mark; Ge, Yulin
Histopathological studies suggest that cerebral small vessel tortuosity is crucial in age-related blood flow reduction and cellular degeneration. However, in vivo evidence is lacking. Here, we used Ferumoxytol-enhanced 7T MRI to directly visualize cerebral small vessels (>300 µm), enabling the identification of vascular tortuosity and exploration of its links to age, tissue atrophy, and vascular risk factors. High-resolution 2D/3D gradient echo MRI at 7T enhanced with Ferumoxytol, an ultrasmall superparamagnetic iron oxide (USPIO), was obtained and analyzed for cerebral small medullary artery tortuosity from 37 healthy participants (21-70 years; mean/SD: 38±14 years; 19 females). Tortuous artery count and tortuosity indices were compared between young and old groups. Age effects on vascular tortuosity were examined through partial correlations and multiple linear regression, adjusting for sex, body mass index (BMI), blood pressure (BP), and other vascular risk factors. Associations between tortuous medullary arteries and tissue atrophy, perivascular spaces (PVS), and white matter (WM) hyperintensities were explored. Age and BMI, rather than BP, showed positive correlations with both tortuous artery count and tortuosity indices. A significant correlation existed between the number of tortuous arteries and WM atrophy. WM lesions were found in proximity to or at the distal ends of tortuous medullary arteries, especially within the deep WM. Moreover, the elderly population displayed a higher prevalence of PVS, including those containing enclosed tortuous arteries. Leveraging the blooming effect of Ferumoxytol, 7T MRI excels in directly detecting cerebral small arterial tortuosity in vivo, unveiling its associations with age, BMI, tissue atrophy, WMH and PVS.
PMID: 38270121
ISSN: 2152-5250
CID: 5625162
Prospective Longitudinal Perfusion in Probable Alzheimer's Disease Correlated with Atrophy in Temporal Lobe
Zhou, Tony D; Zhang, Zongpai; Balachandrasekaran, Arvind; Raji, Cyrus A; Becker, James T; Kuller, Lewis H; Ge, Yulin; Lopez, Oscar L; Dai, Weiying; Gach, H Michael
Reduced cerebral blood flow (CBF) in the temporoparietal region and gray matter volumes (GMVs) in the temporal lobe were previously reported in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the temporal relationship between reductions in CBF and GMVs requires further investigation. This study sought to determine if reduced CBF is associated with reduced GMVs, or vice versa. Data came from 148 volunteers of the Cardiovascular Health Study Cognition Study (CHS-CS), including 58 normal controls (NC), 50 MCI, and 40 AD who had perfusion and structural MRIs during 2002-2003 (Time 2). Sixty-three of the 148 volunteers had follow-up perfusion and structural MRIs (Time 3). Forty out of the 63 volunteers received prior structural MRIs during 1997-1999 (Time 1). The relationships between GMVs and subsequent CBF changes, and between CBF and subsequent GMV changes were investigated. At Time 2, we observed smaller GMVs (p<0.05) in the temporal pole region in AD compared to NC and MCI. We also found associations between: (1) temporal pole GMVs at Time 2 and subsequent declines in CBF in this region (p=0.0014) and in the temporoparietal region (p=0.0032); (2) hippocampal GMVs at Time 2 and subsequent declines in CBF in the temporoparietal region (p=0.012); and (3) temporal pole CBF at Time 2 and subsequent changes in GMV in this region (p = 0.011). Therefore, hypoperfusion in the temporal pole may be an early event driving its atrophy. Perfusion declines in the temporoparietal and temporal pole follow atrophy in this temporal pole region.
PMID: 37196135
ISSN: 2152-5250
CID: 5544282
Vascular Contributions to Healthy Aging and Dementia [Editorial]
Ge, Yulin
Vascular pathologies are among the most common contributors to neurodegenerative changes across the spectrum of normal aging to dementia. Cerebral small vessel disease (SVD) encompasses a wide range of conditions affecting capillaries, small arteries, and arterioles, as well as perivascular spaces and fluid dynamics in the brain, playing a significant role in vascular contributions to cognitive impairment and dementia (VCID). These factors can accelerate the progression of SVD and neuronal degeneration. Since aging is the primary risk factor for Alzheimer's disease (AD) and AD-related dementias (ADRD), this Research Topic aims to gather recent research to better understand vascular contributions to healthy aging and age-related cognitive impairment. Other risk factors include diabetes, lifestyle factors, high cholesterol, vascular inflammation, and immune remodeling, all of which can accelerate cognitive dysfunction progression. This special issue includes a total of 21 articles comprising Reviews, Perspectives, and Original Research articles. The articles cover various technical and biological aspects related to recent progress in aging and dementia research. We aim to promote research exchange across different fields, including imaging, VCID, molecular biology, neuroinflammation, and immunology. Most papers in this special issue focus on understanding the disease mechanisms of AD/ADRD and developing new therapeutic strategies.
PMCID:11272195
PMID: 39059424
ISSN: 2152-5250
CID: 5723772
VICTR: Venous transit time imaging by changes in T1 relaxation
Shi, Wen; Jiang, Dengrong; Hu, Zhiyi; Yedavalli, Vivek; Ge, Yulin; Moghekar, Abhay; Lu, Hanzhang
PURPOSE/OBJECTIVE:Abnormalities in cerebral veins are a common finding in many neurological diseases, yet there is a scarcity of MRI techniques to assess venous hemodynamic function. The present study aims to develop a noncontrast technique to measure a novel blood flow circulatory measure, venous transit time (VTT), which denotes the time it takes for water to travel from capillary to major veins. METHODS:relaxation time. The validity of the measured VTT was tested by studying the VTT along the anatomically known flow trajectory of venous vessels as well as using a physiological vasoconstrictive challenge of caffeine ingestion. Finally, we compared the VTT measured with VICTR MRI to a bolus-tracking method using gadolinium-based contrast agent. RESULTS:VTT was measured to be 3116.3 ± 326.0 ms in the posterior superior sagittal sinus (SSS), which was significantly longer than 2865.0 ± 390.8 ms at the anterior superior sagittal sinus (p = 0.004). The test-retest assessment showed an interclass correlation coefficient of 0.964. VTT was significantly increased by 513.8 ± 239.3 ms after caffeine ingestion (p < 0.001). VTT measured with VICTR MRI revealed a strong correlation (R = 0.84, p = 0.002) with that measured with the contrast-based approach. VTT was found inversely correlated to cerebral blood flow and venous oxygenation across individuals. CONCLUSION/CONCLUSIONS:A noncontrast MRI technique, VICTR MRI, was developed to measure the VTT of the brain.
PMCID:11055660
PMID: 38411277
ISSN: 1522-2594
CID: 5691412
Reduced oxygen extraction fraction in deep cerebral veins associated with cognitive impairment in multiple sclerosis
Sawan, Hasan; Li, Chenyang; Buch, Sagar; Bernitsas, Evanthia; Haacke, E Mark; Ge, Yulin; Chen, Yongsheng
Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SvO2) in the ICVs. Results revealed a significant reduction in the susceptibility of ICVs (212.4 ± 30.8 ppb vs 239.4 ± 25.9 ppb) and a significant increase of SvO2 (74.5 ± 1.89% vs 72.4 ± 2.23%) in patients with RRMS compared with age- and sex-matched healthy controls. Both the susceptibility of ICVs (r = 0.508, p = 0.031) and the SvO2 (r = -0.498, p = 0.036) exhibited a moderate correlation with cognitive decline in these patients assessed by the Paced Auditory Serial Addition Test, while no significant correlation was observed with clinical disability measured by the Expanded Disability Status Scale. The findings suggest that venous susceptibility in ICVs has the potential to serve as a specific indicator of oxygen metabolism and cognitive function in RRMS. .
PMID: 38820447
ISSN: 1559-7016
CID: 5664002
In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T
Li, Chenyang; Buch, Sagar; Sun, Zhe; Muccio, Marco; Jiang, Li; Chen, Yongsheng; Haacke, E Mark; Zhang, Jiangyang; Wisniewski, Thomas M; Ge, Yulin
Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p = 0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.
PMID: 38554779
ISSN: 1095-9572
CID: 5645402
Simultaneous perfusion, diffusion, T2 *, and T1 mapping with MR fingerprinting
Fan, Hongli; Bunker, Lisa; Wang, Zihan; Durfee, Alexandra Zezinka; Lin, Doris; Yedavalli, Vivek; Ge, Yulin; Zhou, Xiaohong Joe; Hillis, Argye E; Lu, Hanzhang
PURPOSE/OBJECTIVE:has important applications in cerebrovascular diseases. At present, these sequences are performed separately. This study aims to develop a novel MRI technique to simultaneously estimate these parameters. METHODS:* mapping). Test-retest repeatability and initial clinical application in two patients with stroke were evaluated. RESULTS:estimation was highly reliable, with voxelwise coefficient of variation (CoV) <5%. The CoV for arterial transit time and cerebral blood flow was 16% ± 3% and 25% ± 9%, respectively. The results from the two patients with stroke demonstrated that parametric maps derived from the proposed method can detect both ischemic and hemorrhagic stroke. CONCLUSION/CONCLUSIONS:The proposed method is a promising technique for multi-parametric mapping and has potential use in patients with stroke.
PMID: 37749847
ISSN: 1522-2594
CID: 5611522
The impact of body position on neurofluid dynamics: present insights and advancements in imaging
Muccio, Marco; Sun, Zhe; Chu, David; Damadian, Brianna E; Minkoff, Lawrence; Bonanni, Luciano; Ge, Yulin
The intricate neurofluid dynamics and balance is essential in preserving the structural and functional integrity of the brain. Key among these forces are: hemodynamics, such as heartbeat-driven arterial and venous blood flow, and hydrodynamics, such as cerebrospinal fluid (CSF) circulation. The delicate interplay between these dynamics is crucial for maintaining optimal homeostasis within the brain. Currently, the widely accepted framework for understanding brain functions is the Monro-Kellie's doctrine, which posits a constant sum of intracranial CSF, blood flow and brain tissue volumes. However, in recent decades, there has been a growing interest in exploring the dynamic interplay between these elements and the impact of external factors, such as daily changes in body position. CSF circulation in particular plays a crucial role in the context of neurodegeneration and dementia, since its dysfunction has been associated with impaired clearance mechanisms and accumulation of toxic substances. Despite the implementation of various invasive and non-invasive imaging techniques to investigate the intracranial hemodynamic or hydrodynamic properties, a comprehensive understanding of how all these elements interact and are influenced by body position remains wanted. Establishing a comprehensive overview of this topic is therefore crucial and could pave the way for alternative care approaches. In this review, we aim to summarize the existing understanding of intracranial hemodynamic and hydrodynamic properties, fundamental for brain homeostasis, along with factors known to influence their equilibrium. Special attention will be devoted to elucidating the effects of body position shifts, given their significance and remaining ambiguities. Furthermore, we will explore recent advancements in imaging techniques utilized for real time and non-invasive measurements of dynamic body fluid properties in-vivo.
PMCID:11582045
PMID: 39582951
ISSN: 1663-4365
CID: 5803802
Simultaneous and cumulative effects of tDCS on cerebral metabolic rate of oxygen in multiple sclerosis
Muccio, Marco; Pilloni, Giuseppina; Walton Masters, Lillian; He, Peidong; Krupp, Lauren; Datta, Abhishek; Bikson, Marom; Charvet, Leigh; Ge, Yulin
INTRODUCTION/UNASSIGNED:Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique with simultaneous (during stimulation) and cumulative effects (after repeated sessions) on blood flow and neuronal metabolism. These effects remain mostly unclear especially in multiple sclerosis (MS). This work aims to elucidate brain metabolic and hemodynamic underpinnings of tDCS and its potential therapeutic impact in MS patients using quantitative tDCS-MRI. METHODS/UNASSIGNED:) were obtained at pre-tDCS, during-tDCS and post-tDCS. RESULTS/UNASSIGNED:and CBF in pre-tDCS follow up, reaching the magnitudes measured at baseline during-tDCS. DISCUSSION/UNASSIGNED:TDCS induces an acute surge in metabolic activity persisting immediately after the stimulation is removed. Moreover, treatment composed of repeated tDCS-aCT paired sessions contributes to establishing long-lasting increases in neuronal activity.
PMCID:11286420
PMID: 39081842
ISSN: 1662-5161
CID: 5731402
Improving measurement of blood-brain barrier permeability with reduced scan time using deep-learning-derived capillary input function
Bae, Jonghyun; Li, Chenyang; Masurkar, Arjun; Ge, Yulin; Kim, Sungheon Gene
PURPOSE:In Dynamic contrast-enhanced MRI (DCE-MRI), Arterial Input Function (AIF) has been shown to be a significant contributor to uncertainty in the estimation of kinetic parameters. This study is to assess the feasibility of using a deep learning network to estimate local Capillary Input Function (CIF) to estimate blood-brain barrier (BBB) permeability, while reducing the required scan time. MATERIALS AND METHOD:-10min methods in estimating the PS values. RESULTS:-10min. We found a 75% increase of BBB permeability in the gray matter and a 35% increase in the white matter, when comparing the older group to the younger group. CONCLUSIONS:We demonstrated the feasibility of estimating the capillary-level input functions using a deep learning network. We also showed that this method can be used to estimate subtle age-related changes in BBB permeability with reduced scan time, without compromising accuracy. Moreover, the trained deep learning network can automatically select CIF, reducing the potential uncertainty resulting from manual user-intervention.
PMCID:10475161
PMID: 37507078
ISSN: 1095-9572
CID: 5591772