Searched for: in-biosketch:yes
person:hr18
The neutrophil to lymphocyte ratio associates with markers of Alzheimer's disease pathology in cognitively unimpaired elderly people
Jacobs, Tovia; Jacobson, Sean R; Fortea, Juan; Berger, Jeffrey S; Vedvyas, Alok; Marsh, Karyn; He, Tianshe; Gutierrez-Jimenez, Eugenio; Fillmore, Nathanael R; Bubu, Omonigho M; Gonzalez, Moses; Figueredo, Luisa; Gaggi, Naomi L; Plaska, Chelsea Reichert; Pomara, Nunzio; Blessing, Esther; Betensky, Rebecca; Rusinek, Henry; Zetterberg, Henrik; Blennow, Kaj; Glodzik, Lidia; Wisniewski, Thomas M; Leon, Mony J; Osorio, Ricardo S; Ramos-Cejudo, Jaime
BACKGROUND/UNASSIGNED:(p-tau), as well as the trajectories of these CSF measures obtained longitudinally. RESULTS/UNASSIGNED:A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aβ-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aβ42 (β=-12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (β = 26.812, p = 0.019) and p-tau (β = 3.441, p = 0.015), but not Aβ42. In the NYU cohort alone, subjects classified as Aβ+ (n = 38) displayed a stronger association between the NLR and t-tau (β = 100.476, p = 0.037) compared to Aβ- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. CONCLUSIONS/UNASSIGNED:in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.
PMID: 38559231
ISSN: 2693-5015
CID: 5728992
Diffusion imaging markers of accelerated aging of the lower cingulum in subjective cognitive decline
Flaherty, Ryn; Sui, Yu Veronica; Masurkar, Arjun V; Betensky, Rebecca A; Rusinek, Henry; Lazar, Mariana
INTRODUCTION/UNASSIGNED:Alzheimer's Disease (AD) typically starts in the medial temporal lobe, then develops into a neurodegenerative cascade which spreads to other brain regions. People with subjective cognitive decline (SCD) are more likely to develop dementia, especially in the presence of amyloid pathology. Thus, we were interested in the white matter microstructure of the medial temporal lobe in SCD, specifically the lower cingulum bundle that leads into the hippocampus. Diffusion tensor imaging (DTI) has been shown to differentiate SCD participants who will progress to mild cognitive impairment from those who will not. However, the biology underlying these DTI metrics is unclear, and results in the medial temporal lobe have been inconsistent. METHODS/UNASSIGNED: = 325, 127 SCD). Diffusion MRI was processed to generate regional and voxel-wise diffusion tensor values in bilateral lower cingulum white matter, while T1-weighted MRI was processed to generate regional volume and cortical thickness in the medial temporal lobe white matter, entorhinal cortex, temporal pole, and hippocampus. RESULTS/UNASSIGNED:SCD participants had thinner cortex in bilateral entorhinal cortex and right temporal pole. No between-group differences were noted for any of the microstructural metrics of the lower cingulum. However, correlations with delayed story recall were significant for all diffusion microstructure metrics in the right lower cingulum in SCD, but not in controls, with a significant interaction effect. Additionally, the SCD group showed an accelerated aging effect in bilateral lower cingulum with MD, AxD, and RD. DISCUSSION/UNASSIGNED:The diffusion profiles observed in both interaction effects are suggestive of a mixed neuroinflammatory and neurodegenerative pathology. Left entorhinal cortical thinning correlated with decreased FA and increased RD, suggestive of demyelination. However, right entorhinal cortical thinning also correlated with increased AxD, suggestive of a mixed pathology. This may reflect combined pathologies implicated in early AD. DTI was more sensitive than cortical thickness to the associations between SCD, memory, and age. The combined effects of mixed pathology may increase the sensitivity of DTI metrics to variations with age and cognition.
PMCID:11111894
PMID: 38784911
ISSN: 1664-2295
CID: 5651982
Brain Fluid Clearance After Traumatic Brain Injury Measured Using Dynamic Positron Emission Tomography
Butler, Tracy; Schubert, Julia; Karakatsanis, Nikolaos A; Hugh Wang, Xiuyuan; Xi, Ke; Kang, Yeona; Chen, Kewei; Zhou, Liangdong; Fung, Edward K; Patchell, Abigail; Jaywant, Abhishek; Li, Yi; Chiang, Gloria; Glodzik, Lidia; Rusinek, Henry; de Leon, Mony; Turkheimer, Federico; Shah, Sudhin A
Brain fluid clearance by pathways including the recently described paravascular glymphatic system is a critical homeostatic mechanism by which metabolic products, toxins, and other wastes are removed from the brain. Brain fluid clearance may be especially important after traumatic brain injury (TBI), when blood, neuronal debris, inflammatory cells, and other substances can be released and/or deposited. Using a non-invasive dynamic positron emission tomography (PET) method that models the rate at which an intravenously injected radiolabeled molecule (in this case 11C-flumazenil) is cleared from ventricular cerebrospinal fluid (CSF), we estimated the overall efficiency of brain fluid clearance in humans who had experienced complicated-mild or moderate TBI 3-6 months before neuroimaging (n = 7) as compared to healthy controls (n = 9). While there was no significant difference in ventricular clearance between TBI subjects and controls, there was a significant group difference in dependence of ventricular clearance upon tracer delivery/blood flow to the ventricles. Specifically, in controls, ventricular clearance was highly, linearly dependent upon blood flow to the ventricle, but this relation was disrupted in TBI subjects. When accounting for blood flow and group-specific alterations in blood flow, ventricular clearance was slightly (non-significantly) increased in TBI subjects as compared to controls. Current results contrast with past studies showing reduced glymphatic function after TBI and are consistent with possible differential effects of TBI on glymphatic versus non-glymphatic clearance mechanisms. Further study using multi-modal methods capable of assessing and disentangling blood flow and different aspects of fluid clearance is needed to clarify clearance alterations after TBI.
PMCID:11035850
PMID: 38655117
ISSN: 2689-288x
CID: 5755892
A multiphysics model to predict periventricular white matter hyperintensity growth during healthy brain aging
Caçoilo, Andreia; Dortdivanlioglu, Berkin; Rusinek, Henry; Weickenmeier, Johannes
Periventricular white matter hyperintensities (WMH) are a common finding in medical images of the aging brain and are associated with white matter damage resulting from cerebral small vessel disease, white matter inflammation, and a degeneration of the lateral ventricular wall. Despite extensive work, the etiology of periventricular WMHs remains unclear. We pose that there is a strong coupling between age-related ventricular expansion and the degeneration of the ventricular wall which leads to a dysregulated fluid exchange across this brain-fluid barrier. Here, we present a multiphysics model that couples cerebral atrophy-driven ventricular wall loading with periventricular WMH formation and progression. We use patient data to create eight 2D finite element models and demonstrate the predictive capabilities of our damage model. Our simulations show that we accurately capture the spatiotemporal features of periventricular WMH growth. For one, we observe that damage appears first in both the anterior and posterior horns and then spreads into deeper white matter tissue. For the other, we note that it takes up to 12 years before periventricular WMHs first appear and derive an average annualized periventricular WMH damage growth rate of 15.2 ± 12.7 mm2/year across our models. A sensitivity analysis demonstrated that our model parameters provide sufficient sensitivity to rationalize subject-specific differences with respect to onset time and damage growth. Moreover, we show that the septum pellucidum, a membrane that separates the left and right lateral ventricles, delays the onset of periventricular WMHs at first, but leads to a higher WMH load in the long-term.
PMCID:10399513
PMID: 37546181
ISSN: 2666-5220
CID: 5727772
Author Correction: Generalizable deep learning model for early Alzheimer's disease detection from structural MRIs
Liu, Sheng; Masurkar, Arjun V; Rusinek, Henry; Chen, Jingyun; Zhang, Ben; Zhu, Weicheng; Fernandez-Granda, Carlos; Razavian, Narges
PMID: 37783742
ISSN: 2045-2322
CID: 5735542
Levetiracetam effects on hippocampal blood flow and symptoms in medication-free individuals with nonaffective first episode psychosis (letter) [Letter]
Goff, Donald C; Santacatterina, Michele; Capichioni, Gillian; Ando, Fumika; Hart, Kamber; Convit, Antonio; Rusinek, Henry
PMID: 37657280
ISSN: 1573-2509
CID: 5618122
Mechanical loading of the ventricular wall as a spatial indicator for periventricular white matter degeneration
Visser, Valery L; Caçoilo, Andreia; Rusinek, Henry; Weickenmeier, Johannes
Progressive white matter degeneration in periventricular and deep white matter regions appears as white matter hyperintensities (WMH) on MRI scans. To date, periventricular WMHs are often associated with vascular dysfunction. Here, we demonstrate that ventricular inflation resulting from cerebral atrophy and hemodynamic pulsation with every heartbeat leads to a mechanical loading state of periventricular tissues that significantly affects the ventricular wall. Specifically, we present a physics-based modeling approach that provides a rationale for ependymal cell involvement in periventricular WMH formation. Building on eight previously created 2D finite element brain models, we introduce novel mechanomarkers for ependymal cell loading and geometric measures that characterize lateral ventricular shape. We show that our novel mechanomarkers, such as maximum ependymal cell deformations and maximum curvature of the ventricular wall, spatially overlap with periventricular WMH locations and are sensitive predictors for WMH formation. We also explore the role of the septum pellucidum in mitigating mechanical loading of the ventricular wall by constraining the radial expansion of the lateral ventricles during loading. Our models consistently show that ependymal cells are stretched thin only in the horns of the ventricles irrespective of ventricular shape. We therefore pose that periventricular WMH etiology is strongly linked to the deterioration of the over-stretched ventricular wall resulting in CSF leakage into periventricular white matter. Subsequent secondary damage mechanisms, including vascular degeneration, exacerbate lesion formation and lead to progressive growth into deep white matter regions.
PMCID:10266836
PMID: 37269602
ISSN: 1878-0180
CID: 5541272
Quadratic relationship between systolic blood pressure and white matter lesions in individuals with hypertension
Woldstad, Christopher; Rusinek, Henry; Sweeney, Elizabeth; Butler, Tracy; Li, Yi; Tanzi, Emily; Mardy, Christopher; Harvey, Patrick; de Leon, Mony J; Glodzik, Lidia
BACKGROUND:There is a well documented relationship between cardiovascular risk factors and the development of brain injury, which can lead to cognitive dysfunction. Hypertension (HTN) is a condition increasing the risk of silent and symptomatic ischemic brain lesions. Although benefits of hypertension treatment are indisputable, the target blood pressure value where the possibility of tissue damage is most reduced remains under debate. METHOD/METHODS:Our group performed a cross-sectional (n = 376) and longitudinal (n = 188) study of individuals without dementia or stroke (60% women n = 228, age 68.5 ± 7.4 years; men n = 148, age 70.7 ± 6.9 years). Participants were split into hypertensive (n = 169) and normotensive (n = 207) groups. MR images were obtained on a 3T system. Linear modeling was performed in hypertensive and normotensive cohorts to investigate the relationship between systolic (SBP) and diastolic (DBP) blood pressure, white matter lesion (WML), and brain volumes. RESULTS:Participants in the hypertensive cohort showed a quadratic relationship between SBP and WML, with the lowest amounts of WML being measured in participants with readings at approximately 124 mmHg. Additionally, the hypertensive cohort also exhibited a quadratic relationship between DBP and mean hippocampal volume; participants with readings at approximately 77 mmHg showing the largest volumes. Longitudinally, all groups experienced WML growth, despite different BP trajectories, further suggesting that WML expansion may occur despite or because of BP reduction in individuals with compromised vascular system. CONCLUSION/CONCLUSIONS:Overall, our study suggests that in the hypertensive group there is a valley of mid-range blood pressures displaying less pathology in the brain.
PMID: 36204999
ISSN: 1473-5598
CID: 5361812
Deep Learning Achieves Neuroradiologist-Level Performance in Detecting Hydrocephalus Requiring Treatment
Huang, Yu; Moreno, Raquel; Malani, Rachna; Meng, Alicia; Swinburne, Nathaniel; Holodny, Andrei I; Choi, Ye; Rusinek, Henry; Golomb, James B; George, Ajax; Parra, Lucas C; Young, Robert J
In large clinical centers a small subset of patients present with hydrocephalus that requires surgical treatment. We aimed to develop a screening tool to detect such cases from the head MRI with performance comparable to neuroradiologists. We leveraged 496 clinical MRI exams collected retrospectively at a single clinical site from patients referred for any reason. This diagnostic dataset was enriched to have 259 hydrocephalus cases. A 3D convolutional neural network was trained on 16 manually segmented exams (ten hydrocephalus) and subsequently used to automatically segment the remaining 480 exams and extract volumetric anatomical features. A linear classifier of these features was trained on 240 exams to detect cases of hydrocephalus that required treatment with surgical intervention. Performance was compared to four neuroradiologists on the remaining 240 exams. Performance was also evaluated on a separate screening dataset of 451 exams collected from a routine clinical population to predict the consensus reading from four neuroradiologists using images alone. The pipeline was also tested on an external dataset of 31 exams from a 2nd clinical site. The most discriminant features were the Magnetic Resonance Hydrocephalic Index (MRHI), ventricle volume, and the ratio between ventricle and brain volume. At matching sensitivity, the specificity of the machine and the neuroradiologists did not show significant differences for detection of hydrocephalus on either dataset (proportions test, p > 0.05). ROC performance compared favorably with the state-of-the-art (AUC 0.90-0.96), and replicated in the external validation. Hydrocephalus cases requiring treatment can be detected automatically from MRI in a heterogeneous patient population based on quantitative characterization of brain anatomy with performance comparable to that of neuroradiologists.
PMID: 35581409
ISSN: 1618-727x
CID: 5284262
Cortical Myelin Profile Variations in Healthy Aging Brain: A T1w/T2w Ratio Study
Sui, Yu-Veronica; Masurkar, Arjun V; Rusinek, Henry; Reisberg, Barry; Lazar, Mariana
Demyelination is observed in both healthy aging and age-related neurodegenerative disorders. While the significance of myelin within the cortex is well acknowledged, studies focused on intracortical demyelination and depth-specific structural alterations in normal aging are lacking. Using the recently available Human Connectome Project Aging dataset, we investigated intracortical myelin in a normal aging population using the T1w/T2w ratio. To capture the fine changes across cortical depths, we employed a surface-based approach by constructing cortical profiles traveling perpendicularly through the cortical ribbon and sampling T1w/T2w values. The curvatures of T1w/T2w cortical profiles may be influenced by differences in local myeloarchitecture and other tissue properties, which are known to vary across cortical regions. To quantify the shape of these profiles, we parametrized the level of curvature using a nonlinearity index (NLI) that measures the deviation of the profile from a straight line. We showed that NLI exhibited a steep decline in aging that was independent of local cortical thinning. Further examination of the profiles revealed that lower T1w/T2w near the gray-white matter boundary and superficial cortical depths were major contributors to the apparent NLI variations with age. These findings suggest that demyelination and changes in other T1w/T2w related tissue properties in normal aging may be depth-specific and highlight the potential of NLI as a unique marker of microstructural alterations within the cerebral cortex.
PMID: 36368498
ISSN: 1095-9572
CID: 5357642