Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:hubbas01

Total Results:

47


Janus kinase 2 activation mechanisms revealed by analysis of suppressing mutations

Hammarén, Henrik M; Virtanen, Anniina T; Abraham, Bobin George; Peussa, Heidi; Hubbard, Stevan R; Silvennoinen, Olli
BACKGROUND:Janus kinases (JAK1-3, TYK2) mediate cytokine signals in the regulation of hematopoiesis and immunity. JAK2 clinical mutations cause myeloproliferative neoplasms and leukemia and the mutations strongly concentrate in the regulatory pseudokinase domain, JAK homology 2, JH2. Current clinical JAK inhibitors target the tyrosine kinase domain and lack mutation- and pathway-selectivity. OBJECTIVE:To characterize mechanisms and differences for pathogenic and cytokine-induced JAK2 activation to enable design of novel selective JAK inhibitors. METHODS:Systematic analysis of JAK2 activation requirements using structure-guided mutagenesis, cell signaling assays, microscopy, and biochemical analysis. RESULTS:Distinct structural requirements identified for activation of different pathogenic mutations. Specifically, the predominant JAK2 mutation V617F is the most sensitive to structural perturbations in multiple JH2 elements (C helix (αC), SH2-JH2 linker and ATP-binding site). In contrast, activation of K539L is resistant to most perturbations. Normal cytokine signaling shows distinct differences in activation requirements: JH2 ATP-binding site mutations have only a minor effect on signaling, while JH2 αC mutations reduce homomeric (JAK2-JAK2) EPO signaling, and almost completely abrogate heteromeric (JAK2-JAK1) IFNγ signaling, potentially by disrupting a dimerization interface on JH2. CONCLUSIONS:These results suggest that therapeutic approaches targeting the JH2 ATP-binding site and αC could be effective in inhibiting most pathogenic mutations. JH2 ATP-site targeting have potential for reduced side-effects by retaining EPO and IFNγ functions. Simultaneously, however, we identify the JH2 αC interface as a potential target for pathway-selective JAK inhibitors in diseases with unmutated JAK2, thus providing new insights for the development of novel pharmacological interventions.
PMID: 30092288
ISSN: 1097-6825
CID: 3226652

Crystal structure of the C-terminal four-helix bundle of the potassium channel KCa3.1

Ji, Tianyang; Corbalán-García, Senena; Hubbard, Stevan R
KCa3.1 (also known as SK4 or IK1) is a mammalian intermediate-conductance potassium channel that plays a critical role in the activation of T cells, B cells, and mast cells, effluxing potassium ions to maintain a negative membrane potential for influxing calcium ions. KCa3.1 shares primary sequence similarity with three other (low-conductance) potassium channels: KCa2.1, KCa2.2, and KCa2.3 (also known as SK1-3). These four homotetrameric channels bind calmodulin (CaM) in the cytoplasmic region, and calcium binding to CaM triggers channel activation. Unique to KCa3.1, activation also requires phosphorylation of a single histidine residue, His358, in the cytoplasmic region, which relieves copper-mediated inhibition of the channel. Near the cytoplasmic C-terminus of KCa3.1 (and KCa2.1-2.3), secondary-structure analysis predicts the presence of a coiled-coil/heptad repeat. Here, we report the crystal structure of the C-terminal coiled-coil region of KCa3.1, which forms a parallel four-helix bundle, consistent with the tetrameric nature of the channel. Interestingly, the four copies of a histidine residue, His389, in an 'a' position within the heptad repeat, are observed to bind a copper ion along the four-fold axis of the bundle. These results suggest that His358, the inhibitory histidine in KCa3.1, might coordinate a copper ion through a similar binding mode.
PMCID:6023178
PMID: 29953543
ISSN: 1932-6203
CID: 3161962

Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase

Hubbard, Stevan R
JAK2 is a member of the Janus kinase (JAKs) family of non-receptor protein tyrosine kinases, which includes JAK1-3 and TYK2. JAKs serve as the cytoplasmic signaling components of cytokine receptors and are activated through cytokine-mediated trans-phosphorylation, which leads to receptor phosphorylation and recruitment and phosphorylation of signal transducer and activator of transcription (STAT) proteins. JAKs are unique among tyrosine kinases in that they possess a pseudokinase domain, which is just upstream of the C-terminal tyrosine kinase domain. A wealth of biochemical and clinical data have established that the pseudokinase domain of JAKs is crucial for maintaining a low basal (absence of cytokine) level of tyrosine kinase activity. In particular, gain-of-function mutations in the JAK genes, most frequently, V617F in the pseudokinase domain of JAK2, have been mapped in patients with blood disorders, including myeloproliferative neoplasms and leukemias. Recent structural and biochemical studies have begun to decipher the molecular mechanisms that maintain the basal, low-activity state of JAKs and that, via mutation, lead to constitutive activity and disease. This review will examine these mechanisms and describe how this knowledge could potentially inform drug development efforts aimed at obtaining a mutant (V617F)-selective inhibitor of JAK2.
PMCID:5770812
PMID: 29379470
ISSN: 1664-2392
CID: 2933322

Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1

Srivastava, Shekhar; Panda, Saswati; Li, Zhai; Fuhs, Stephen R; Hunter, Tony; Thiele, Dennis J; Hubbard, Stevan R; Skolnik, Edward Y
KCa2.1, KCa2.2, KCa2.3, and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NPDK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site.
PMCID:5005030
PMID: 27542194
ISSN: 2050-084x
CID: 2219562

Molecular insights into regulation of JAK2 in myeloproliferative neoplasms

Silvennoinen, Olli; Hubbard, Stevan R
The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2.
PMCID:4447858
PMID: 25824690
ISSN: 1528-0020
CID: 1644532

ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation

Hammaren, Henrik M; Ungureanu, Daniela; Grisouard, Jean; Skoda, Radek C; Hubbard, Stevan R; Silvennoinen, Olli
Pseudokinases lack conserved motifs typically required for kinase activity. Nearly half of pseudokinases bind ATP, but only few retain phosphotransfer activity, leaving the functional role of nucleotide binding in most cases unknown. Janus kinases (JAKs) are nonreceptor tyrosine kinases with a tandem pseudokinase-kinase domain configuration, where the pseudokinase domain (JAK homology 2, JH2) has important regulatory functions and harbors mutations underlying hematological and immunological diseases. JH2 of JAK1, JAK2, and TYK2 all bind ATP, but the significance of this is unclear. We characterize the role of nucleotide binding in normal and pathogenic JAK signaling using comprehensive structure-based mutagenesis. Disruption of JH2 ATP binding in wild-type JAK2 has only minor effects, and in the presence of type I cytokine receptors, the mutations do not affect JAK2 activation. However, JH2 mutants devoid of ATP binding ameliorate the hyperactivation of JAK2 V617F. Disrupting ATP binding in JH2 also inhibits the hyperactivity of other pathogenic JAK2 mutants, as well as of JAK1 V658F, and prevents induction of erythrocytosis in a JAK2 V617F myeloproliferative neoplasm mouse model. Molecular dynamic simulations and thermal-shift analysis indicate that ATP binding stabilizes JH2, with a pronounced effect on the C helix region, which plays a critical role in pathogenic activation of JAK2. Taken together, our results suggest that ATP binding to JH2 serves a structural role in JAKs, which is required for aberrant activity of pathogenic JAK mutants. The inhibitory effect of abrogating JH2 ATP binding in pathogenic JAK mutants may warrant novel therapeutic approaches.
PMCID:4403165
PMID: 25825724
ISSN: 1091-6490
CID: 1531932

The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

Cabail, M Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E; Hubbard, Stevan R; Miller, W Todd
The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of alpha-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.
PMCID:4758444
PMID: 25758790
ISSN: 2041-1723
CID: 1495912

Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase

Shan, Yibing; Gnanasambandan, Kavitha; Ungureanu, Daniela; Kim, Eric T; Hammaren, Henrik; Yamashita, Kazuo; Silvennoinen, Olli; Shaw, David E; Hubbard, Stevan R
Janus kinase-2 (JAK2) mediates signaling by various cytokines, including erythropoietin and growth hormone. JAK2 possesses tandem pseudokinase and tyrosine-kinase domains. Mutations in the pseudokinase domain are causally linked to myeloproliferative neoplasms (MPNs) in humans. The structure of the JAK2 tandem kinase domains is unknown, and therefore the molecular bases for pseudokinase-mediated autoinhibition and pathogenic activation remain obscure. Using molecular dynamics simulations of protein-protein docking, we produced a structural model for the autoinhibitory interaction between the JAK2 pseudokinase and kinase domains. A striking feature of our model, which is supported by mutagenesis experiments, is that nearly all of the disease mutations map to the domain interface. The simulations indicate that the kinase domain is stabilized in an inactive state by the pseudokinase domain, and they offer a molecular rationale for the hyperactivity of V617F, the predominant JAK2 MPN mutation.
PMCID:4508010
PMID: 24918548
ISSN: 1545-9985
CID: 1102862

Structural basis for the interaction of the adaptor protein grb14 with activated ras

Qamra, Rohini; Hubbard, Stevan R
Grb14, a member of the Grb7-10-14 family of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. Grb7-10-14 contain several signaling modules, including a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a family-specific BPS (between PH and SH2) region, and a C-terminal Src-homology-2 (SH2) domain. We showed previously that the RA and PH domains, along with the BPS region and SH2 domain, are necessary for downregulation of insulin signaling. Here, we report the crystal structure at 2.4-A resolution of the Grb14 RA and PH domains in complex with GTP-loaded H-Ras (G12V). The structure reveals that the Grb14 RA and PH domains form an integrated structural unit capable of binding simultaneously to small GTPases and phosphoinositide lipids. The overall mode of binding of the Grb14 RA domain to activated H-Ras is similar to that of the RA domains of RalGDS and Raf1 but with important distinctions. The integrated RA-PH structural unit in Grb7-10-14 is also found in a second adaptor family that includes Rap1-interacting adaptor molecule (RIAM) and lamellipodin, proteins involved in actin-cytoskeleton rearrangement. The structure of Grb14 RA-PH in complex with H-Ras represents the first detailed molecular characterization of tandem RA-PH domains bound to a small GTPase and provides insights into the molecular basis for specificity.
PMCID:3742580
PMID: 23967305
ISSN: 1932-6203
CID: 503702

Mycobacterium tuberculosis prokaryotic ubiquitin-like protein-deconjugating enzyme is an unusual aspartate amidase

Burns, Kristin E; McAllister, Fiona E; Schwerdtfeger, Carsten; Mintseris, Julian; Cerda-Maira, Francisca; Noens, Elke E; Wilmanns, Matthias; Hubbard, Stevan R; Melandri, Francesco; Ovaa, Huib; Gygi, Steven P; Darwin, K Heran
Deamidase of Pup (Dop), the prokaryotic ubiquitin-like protein (Pup)-deconjugating enzyme, is critical for the full virulence of Mycobacterium tuberculosis and is unique to bacteria, providing an ideal target for the development of selective chemotherapies. We used a combination of genetics and chemical biology to characterize the mechanism of depupylation. We identified an aspartate as a potential nucleophile in the active site of Dop, suggesting a novel protease activity to target for inhibitor development.
PMCID:3481346
PMID: 22942282
ISSN: 1083-351x
CID: 2890162