Searched for: in-biosketch:yes
person:hussam06
An improved assay to measure the phospholipid transfer activity of microsomal triglyceride transport protein
Anaganti, Narasimha; Rajan, Sujith; Hussain, M Mahmood
Microsomal triglyceride transfer protein (MTP) is essential for the assembly and secretion of apolipoprotein B-containing lipoproteins. MTP transfers diverse lipids such as triacylglycerol (TAG) and phospholipids (PLs) between vesicles in vitro. Previously, we described methods to measure these transfer activities using N-7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled lipids. The NBD-TAG transfer assay is sensitive and can measure MTP activity in cell and tissue homogenates. In contrast, the NBD-PL transfer assay shows high background and is less sensitive; therefore, purified MTP is required to measure its PL transfer activity. Here, we optimized the assay to measure also the PL transfer activity of MTP in cell and tissue homogenates. We found that donor vesicles containing dioleoylphosphoethanolamine and palmitoyloleoylphosphoethanolamine result in a low background signal and are suitable to assay the PL transfer activity of MTP. This assay was capable of measuring protein-dependent and substrate-dependent saturation kinetics. Furthermore, the MTP inhibitor lomitapide blocked this transfer activity. One drawback of the PL transfer assay is that it is less sensitive at physiological temperature than at room temperature, and it requires longer incubation times than the TAG transfer assay. Nevertheless, this significantly improved sensitive assay is simple and easy to perform, involves few steps, can be conducted at room temperature, and is suitable for high-throughput screening to identify inhibitors. This assay can be adapted to measure other PL transfer proteins and to address biological and physiological importance of these activities.
PMCID:8569553
PMID: 34673018
ISSN: 1539-7262
CID: 5266622
Nonalcoholic fatty liver disease in CLOCK mutant mice
Pan, Xiaoyue; Queiroz, Joyce; Hussain, M Mahmood
Nonalcoholic fatty liver disease (NAFLD) is becoming a major health issue as obesity increases around the world. We studied the effect of a circadian locomotor output cycles kaput (CLOCK) mutant (ClkΔ19/Δ19) protein on hepatic lipid metabolism in C57BL/6 Clkwt/wt and apolipoprotein E-deficient (Apoe-/-) mice. Both ClkΔ19/Δ19 and ClkΔ19/Δ19 Apoe-/- mice developed a full spectrum of liver diseases (steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma) recognized in human NAFLD when challenged with a Western diet, lipopolysaccharide, or CoCl2. We identified induction of CD36 and hypoxia-inducible factor 1α (HIF1α) proteins as contributing factors for NAFLD. Mechanistic studies showed that WT CLOCK protein interacted with the E-box enhancer elements in the promoters of the proline hydroxylase domain (PHD) proteins to increase expression. In ClkΔ19/Δ19 mice, PHD levels were low, and HIF1α protein levels were increased. When its levels were high, HIF1α interacted with the Cd36 promoter to augment expression and enhance fatty acid uptake. Thus, these studies establish a regulatory link among circadian rhythms, hypoxia response, fatty acid uptake, and NAFLD. The mouse models described here may be useful for further mechanistic studies in the progression of liver diseases and in the discovery of drugs for the treatment of these disorders.
PMCID:7410080
PMID: 32396530
ISSN: 1558-8238
CID: 5035222
To absorb fat - supersize my lipid droplets
Goldberg, Ira J; Hussain, M Mahmood
Lipins play important roles in adipogenesis, insulin sensitivity, and gene regulation, and mutations in these genes cause lipodystrophy, myoglobinuria, and inflammatory disorders. While all lipins (lipin 1, 2, and 3) act as phosphatidic acid phosphatase (PAP) enzymes, which are required for triacylglycerol (TAG) synthesis from glycerol 3-phosphate, lipin 1 has been the focus of most of the lipin-related research. In the current issue of the JCI, Zhang et al. show that while lipin 2 and 3 are expendable for the incorporation of dietary fatty acids into triglycerides, lipin 2/3 PAP activity has a critical role in phospholipid homeostasis and chylomicron assembly in enterocytes.
PMID: 30507609
ISSN: 1558-8238
CID: 3520562
Oleoylethanolamide differentially regulates glycerolipid synthesis and lipoprotein secretion in intestine and liver
Pan, Xiaoyue; Schwartz, Gary J; Hussain, M Mahmood
Dietary fat absorption takes place in the intestine, and the liver mobilizes endogenous fat to other tissues by synthesizing lipoproteins that require apoB and microsomal triglyceride transfer protein (MTP). Dietary fat triggers the synthesis of oleoylethanolamide (OEA), a regulatory fatty acid that signals satiety to reduce food intake mainly by enhancing neural PPARα activity, in enterocytes. We explored OEA's roles in the assembly of lipoproteins in WT and Ppara -/- mouse enterocytes and hepatocytes, Caco-2 cells, and human liver-derived cells. In differentiated Caco-2 cells, OEA increased synthesis and secretion of triacylglycerols, apoB secretion in chylomicrons, and MTP expression in a dose-dependent manner. OEA also increased MTP activity and triacylglycerol secretion in WT and knockout primary enterocytes. In contrast to its intestinal cell effects, OEA reduced synthesis and secretion of triacylglycerols, apoB secretion, and MTP expression and activity in human hepatoma Huh-7 and HepG2 cells. Also, OEA reduced MTP expression and triacylglycerol secretion in WT, but not knockout, primary hepatocytes. These studies indicate differential effects of OEA on lipid synthesis and lipoprotein assembly: in enterocytes, OEA augments glycerolipid synthesis and lipoprotein assembly independent of PPARα. Conversely, in hepatocytes, OEA reduces MTP expression, glycerolipid synthesis, and lipoprotein secretion through PPARα-dependent mechanisms.
PMCID:6277166
PMID: 30369486
ISSN: 1539-7262
CID: 5035202
Human MicroRNA-33b Promotes Atherosclerosis in Apoe-/- Mice [Editorial]
Hussain, M Mahmood; Goldberg, Ira J
PMID: 30354227
ISSN: 1524-4636
CID: 3385932
Differential Regulation of Lipoprotein Assembly and Secretion and Mtp Expression in Intestinal and Hepatic Cells by Oleoylethanolamide [Meeting Abstract]
Pan, Xiaoyue; Hussain, Mahmood M.
ISI:000497511500283
ISSN: 1079-5642
CID: 5746342
Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids
Scerbo, Diego; Son, Ni-Huiping; Sirwi, Alaa; Zeng, Lixia; Sas, Kelli M; Cifarelli, Vincenza; Schoiswohl, Gabriele; Huggins, Lesley-Ann; Gumaste, Namrata; Hu, Yunying; Pennathur, Subramaniam; Abumrad, Nada A; Kershaw, Erin E; Hussain, M Mahmood; Susztak, Katalin; Goldberg, Ira J
Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or non-esterified fatty acids (NEFAs). With overnight fasting, kidneys accumulated triglyceride but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a beta adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cd36 mRNA increased 2-fold, and Angptl4, an LpL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LpL with poloxamer 407 or by use of mice with induced genetic LpL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter CD36.
PMCID:5454509
PMID: 28404638
ISSN: 1539-7262
CID: 2528302
Global and Liver-Specific Bmal1-Deficient Mice Regulate Intestinal Glucose Absorption [Meeting Abstract]
Pan, Xiaoyue; Ullah, Mohammed; Hussain, Mahmood M.
ISI:000408064101105
ISSN: 0012-1797
CID: 5746352
Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis
Pan, Xiaoyue; Bradfield, Christopher A; Hussain, M Mahmood
Circadian rhythms controlled by clock genes affect plasma lipids. Here we show that global ablation of Bmal1 in Apoe-/- and Ldlr-/- mice and its liver-specific ablation in Apoe-/- (L-Bmal1-/-Apoe-/-) mice increases, whereas overexpression of BMAL1 in L-Bmal1-/-Apoe-/- and Apoe-/-mice decreases hyperlipidaemia and atherosclerosis. Bmal1 deficiency augments hepatic lipoprotein secretion and diminishes cholesterol excretion to the bile. Further, Bmal1 deficiency reduces expression of Shp and Gata4. Reductions in Shp increase Mtp expression and lipoprotein production, whereas reductions in Gata4 diminish Abcg5/Abcg8 expression and biliary cholesterol excretion. Forced SHP expression normalizes lipoprotein secretion with no effect on biliary cholesterol excretion, while forced GATA4 expression increases cholesterol excretion to the bile and reduces plasma lipids in L-Bmal1-/-Apoe-/- and Apoe-/- mice. Thus, our data indicate that Bmal1 modulates lipoprotein production and biliary cholesterol excretion by regulating the expression of Mtp and Abcg5/Abcg8 via Shp and Gata4.
PMCID:5062545
PMID: 27721414
ISSN: 2041-1723
CID: 5035182
MicroRNA-30c Mimic Mitigates Hypercholesterolemia and Atherosclerosis in Mice
Irani, Sara; Pan, Xiaoyue; Peck, Bailey C E; Iqbal, Jahangir; Sethupathy, Praveen; Hussain, M Mahmood
High plasma cholesterol levels are a major risk factor for atherosclerosis. Plasma cholesterol can be reduced by inhibiting lipoprotein production; however, this is associated with steatosis. Previously we showed that lentivirally mediated hepatic expression of microRNA-30c (miR-30c) reduced hyperlipidemia and atherosclerosis in mice without causing hepatosteatosis. Because viral therapy would be formidable, we examined whether a miR-30c mimic can be used to mitigate hyperlipidemia and atherosclerosis without inducing steatosis. Delivery of a miR-30c mimic to the liver diminished diet-induced hypercholesterolemia in C57BL/6J mice. Reductions in plasma cholesterol levels were significantly correlated with increases in hepatic miR-30c levels. Long term dose escalation studies showed that miR-30c mimic caused sustained reductions in plasma cholesterol with no obvious side effects. Furthermore, miR-30c mimic significantly reduced hypercholesterolemia and atherosclerosis in Apoe(-/-) mice. Mechanistic studies showed that miR-30c mimic had no effect on LDL clearance but reduced lipoprotein production by down-regulating microsomal triglyceride transfer protein expression. MiR-30c had no effect on fatty acid oxidation but reduced lipid synthesis. Additionally, whole transcriptome analysis revealed that miR-30c mimic significantly down-regulated hepatic lipid synthesis pathways. Therefore, miR-30c lowers plasma cholesterol and mitigates atherosclerosis by reducing microsomal triglyceride transfer protein expression and lipoprotein production and avoids steatosis by diminishing lipid syntheses. It mitigates atherosclerosis most likely by reducing lipoprotein production and plasma cholesterol. These findings establish that increasing hepatic miR-30c levels is a viable treatment option for reducing hypercholesterolemia and atherosclerosis.
PMCID:5000085
PMID: 27365390
ISSN: 1083-351x
CID: 5035172