Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:knollf01

Total Results:

107


fastMRI+, Clinical pathology annotations for knee and brain fully sampled magnetic resonance imaging data

Zhao, Ruiyang; Yaman, Burhaneddin; Zhang, Yuxin; Stewart, Russell; Dixon, Austin; Knoll, Florian; Huang, Zhengnan; Lui, Yvonne W; Hansen, Michael S; Lungren, Matthew P
Improving speed and image quality of Magnetic Resonance Imaging (MRI) using deep learning reconstruction is an active area of research. The fastMRI dataset contains large volumes of raw MRI data, which has enabled significant advances in this field. While the impact of the fastMRI dataset is unquestioned, the dataset currently lacks clinical expert pathology annotations, critical to addressing clinically relevant reconstruction frameworks and exploring important questions regarding rendering of specific pathology using such novel approaches. This work introduces fastMRI+, which consists of 16154 subspecialist expert bounding box annotations and 13 study-level labels for 22 different pathology categories on the fastMRI knee dataset, and 7570 subspecialist expert bounding box annotations and 643 study-level labels for 30 different pathology categories for the fastMRI brain dataset. The fastMRI+ dataset is open access and aims to support further research and advancement of medical imaging in MRI reconstruction and beyond.
PMCID:8983757
PMID: 35383186
ISSN: 2052-4463
CID: 5201602

Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction

Narnhofer, Dominik; Effland, Alexander; Kobler, Erich; Hammernik, Kerstin; Knoll, Florian; Pock, Thomas
Recent deep learning approaches focus on improving quantitative scores of dedicated benchmarks, and therefore only reduce the observation-related (aleatoric) uncertainty. However, the model-immanent (epistemic) uncertainty is less frequently systematically analyzed. In this work, we introduce a Bayesian variational framework to quantify the epistemic uncertainty. To this end, we solve the linear inverse problem of undersampled MRI reconstruction in a variational setting. The associated energy functional is composed of a data fidelity term and the total deep variation (TDV) as a learned parametric regularizer. To estimate the epistemic uncertainty we draw the parameters of the TDV regularizer from a multivariate Gaussian distribution, whose mean and covariance matrix are learned in a stochastic optimal control problem. In several numerical experiments, we demonstrate that our approach yields competitive results for undersampled MRI reconstruction. Moreover, we can accurately quantify the pixelwise epistemic uncertainty, which can serve radiologists as an additional resource to visualize reconstruction reliability.
PMID: 34506279
ISSN: 1558-254x
CID: 4998482

Virtual mouse brain histology from multi-contrast MRI via deep learning

Liang, Zifei; Lee, Choong H; Arefin, Tanzil M; Dong, Zijun; Walczak, Piotr; Hai Shi, Song; Knoll, Florian; Ge, Yulin; Ying, Leslie; Zhang, Jiangyang
PMID: 35088711
ISSN: 2050-084x
CID: 5154822

Alternating Learning Approach for Variational Networks and Undersampling Pattern in Parallel MRI Applications

Zibetti, Marcelo V W; Knoll, Florian; Regatte, Ravinder R
This work proposes an alternating learning approach to learn the sampling pattern (SP) and the parameters of variational networks (VN) in accelerated parallel magnetic resonance imaging (MRI). We investigate four variations of the learning approach, that alternates between improving the SP, using bias-accelerated subset selection, and improving parameters of the VN, using ADAM. The variations include the use of monotone or non-monotone alternating steps and systematic reduction of learning rates. The algorithms learn an effective pair to be used in future scans, including an SP that captures fewer k-space samples in which the generated undersampling artifacts are removed by the VN reconstruction. The quality of the VNs and SPs obtained by the proposed approaches is compared against different methods, including other kinds of joint learning methods and state-of-art reconstructions, on two different datasets at various acceleration factors (AF). We observed improvements visually and in three different figures of merit commonly used in deep learning (RMSE, SSIM, and HFEN) on AFs from 2 to 20 with brain and knee joint datasets when compared to the other approaches. The improvements ranged from 1% to 62% over the next best approach tested with VNs. The proposed approach has shown stable performance, obtaining similar learned SPs under different initial training conditions. We observe that the improvement is not only due to the learned sampling density, it is also due to the learned position of samples in k-space. The proposed approach was able to learn effective pairs of SPs and reconstruction VNs, improving 3D Cartesian accelerated parallel MRI applications.
PMCID:9252023
PMID: 35795003
ISSN: 2333-9403
CID: 5280482

Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction

Muckley, Matthew J; Riemenschneider, Bruno; Radmanesh, Alireza; Kim, Sunwoo; Jeong, Geunu; Ko, Jingyu; Jun, Yohan; Shin, Hyungseob; Hwang, Dosik; Mostapha, Mahmoud; Arberet, Simon; Nickel, Dominik; Ramzi, Zaccharie; Ciuciu, Philippe; Starck, Jean-Luc; Teuwen, Jonas; Karkalousos, Dimitrios; Zhang, Chaoping; Sriram, Anuroop; Huang, Zhengnan; Yakubova, Nafissa; Lui, Yvonne W; Knoll, Florian
Accelerating MRI scans is one of the principal outstanding problems in the MRI research community. Towards this goal, we hosted the second fastMRI competition targeted towards reconstructing MR images with subsampled k-space data. We provided participants with data from 7,299 clinical brain scans (de-identified via a HIPAA-compliant procedure by NYU Langone Health), holding back the fully-sampled data from 894 of these scans for challenge evaluation purposes. In contrast to the 2019 challenge, we focused our radiologist evaluations on pathological assessment in brain images. We also debuted a new Transfer track that required participants to submit models evaluated on MRI scanners from outside the training set. We received 19 submissions from eight different groups. Results showed one team scoring best in both SSIM scores and qualitative radiologist evaluations. We also performed analysis on alternative metrics to mitigate the effects of background noise and collected feedback from the participants to inform future challenges. Lastly, we identify common failure modes across the submissions, highlighting areas of need for future research in the MRI reconstruction community.
PMID: 33929957
ISSN: 1558-254x
CID: 4853732

CG-SENSE revisited: Results from the first ISMRM reproducibility challenge

Maier, Oliver; Baete, Steven Hubert; Fyrdahl, Alexander; Hammernik, Kerstin; Harrevelt, Seb; Kasper, Lars; Karakuzu, Agah; Loecher, Michael; Patzig, Franz; Tian, Ye; Wang, Ke; Gallichan, Daniel; Uecker, Martin; Knoll, Florian
PURPOSE/OBJECTIVE:The aim of this work is to shed light on the issue of reproducibility in MR image reconstruction in the context of a challenge. Participants had to recreate the results of "Advances in sensitivity encoding with arbitrary k-space trajectories" by Pruessmann et al. METHODS: The task of the challenge was to reconstruct radially acquired multicoil k-space data (brain/heart) following the method in the original paper, reproducing its key figures. Results were compared to consolidated reference implementations created after the challenge, accounting for the two most common programming languages used in the submissions (Matlab/Python). RESULTS:Visually, differences between submissions were small. Pixel-wise differences originated from image orientation, assumed field-of-view, or resolution. The reference implementations were in good agreement, both visually and in terms of image similarity metrics. DISCUSSION AND CONCLUSION/CONCLUSIONS:While the description level of the published algorithm enabled participants to reproduce CG-SENSE in general, details of the implementation varied, for example, density compensation or Tikhonov regularization. Implicit assumptions about the data lead to further differences, emphasizing the importance of sufficient metadata accompanying open datasets. Defining reproducibility quantitatively turned out to be nontrivial for this image reconstruction challenge, in the absence of ground-truth results. Typical similarity measures like NMSE of SSIM were misled by image intensity scaling and outlier pixels. Thus, to facilitate reproducibility, researchers are encouraged to publish code and data alongside the original paper. Future methodological papers on MR image reconstruction might benefit from the consolidated reference implementations of CG-SENSE presented here, as a benchmark for methods comparison.
PMID: 33179826
ISSN: 1522-2594
CID: 4663022

Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians

Lin, Dana J; Johnson, Patricia M; Knoll, Florian; Lui, Yvonne W
Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep-learning-based MR image reconstruction. We review the basic concepts of how deep-learning algorithms aid in the transformation of raw k-space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep-learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep-learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.
PMID: 32048372
ISSN: 1522-2586
CID: 4304412

Training a neural network for Gibbs and noise removal in diffusion MRI

Muckley, Matthew J; Ades-Aron, Benjamin; Papaioannou, Antonios; Lemberskiy, Gregory; Solomon, Eddy; Lui, Yvonne W; Sodickson, Daniel K; Fieremans, Els; Novikov, Dmitry S; Knoll, Florian
PURPOSE/OBJECTIVE:To develop and evaluate a neural network-based method for Gibbs artifact and noise removal. METHODS:A convolutional neural network (CNN) was designed for artifact removal in diffusion-weighted imaging data. Two implementations were considered: one for magnitude images and one for complex images. Both models were based on the same encoder-decoder structure and were trained by simulating MRI acquisitions on synthetic non-MRI images. RESULTS:Both machine learning methods were able to mitigate artifacts in diffusion-weighted images and diffusion parameter maps. The CNN for complex images was also able to reduce artifacts in partial Fourier acquisitions. CONCLUSIONS:The proposed CNNs extend the ability of artifact correction in diffusion MRI. The machine learning method described here can be applied on each imaging slice independently, allowing it to be used flexibly in clinical applications.
PMID: 32662910
ISSN: 1522-2594
CID: 4528102

Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge

Knoll, Florian; Murrell, Tullie; Sriram, Anuroop; Yakubova, Nafissa; Zbontar, Jure; Rabbat, Michael; Defazio, Aaron; Muckley, Matthew J; Sodickson, Daniel K; Zitnick, C Lawrence; Recht, Michael P
PURPOSE/OBJECTIVE:To advance research in the field of machine learning for MR image reconstruction with an open challenge. METHODS:We provided participants with a dataset of raw k-space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi-coil and single-coil data. We performed a two-stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019. RESULTS:We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches. CONCLUSIONS:The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption.
PMID: 32506658
ISSN: 1522-2594
CID: 4505052

Rapid mono and biexponential 3D-T1ρ mapping of knee cartilage using variational networks

Zibetti, Marcelo V W; Johnson, Patricia M; Sharafi, Azadeh; Hammernik, Kerstin; Knoll, Florian; Regatte, Ravinder R
In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T1ρ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.
PMCID:7645759
PMID: 33154515
ISSN: 2045-2322
CID: 4662942