Searched for: in-biosketch:yes
person:korals01
Role of Antigenic Stimulation in Cutaneous T-Cell Lymphomas
Gumina, Megan E; Hooper, Madeline J; Zhou, Xiaolong A; Koralov, Sergei B
Cutaneous T-cell lymphoma (CTCL) involves a clonal expansion of malignant cells accumulating in the skin, a primary barrier site. CTCL has long been hypothesized to be caused or perpetuated by chronic antigen stimulation due to unknown exposures. These antigenic triggers, defined as any element that may cause activation of malignant T cells through TCR signaling, have been hypothesized to range from chemicals to microbes. This review covers current evidence supporting chemical and microbial stimuli that may act as antigenic triggers of CTCL and summarizes novel areas of investigation, in which the potential antigenicity of the exposure is still unknown.
PMID: 38149950
ISSN: 1523-1747
CID: 5623182
SHORT CHAIN FATTY ACIDS MITIGATE OSTEOCLAST-MEDIATED ARTHRITIC BONE REMODELLING
Yang, Katharine Lu; Mullins, Briana J; Lejeune, Alannah; Ivanova, Ellie; Shin, Jong; Bajwa, Sofia; Possemato, Richard; Cadwell, Ken; Scher, Jose U; Koralov, Sergei B
OBJECTIVE:To study the effects of Short Chain Fatty Acids (SCFAs) on arthritic bone remodeling. METHODS:CD4Cre mice, with SCFA supplemented water. We also performed in vitro osteoclast differentiation assays in the presence of serum-level SCFAs to evaluate the direct impact of these microbial metabolites on maturation and function of osteoclasts. We further characterized the molecular mechanism of SCFAs by transcriptional analysis. RESULTS:CD4Cre mice. Further interrogation revealed that bone marrow derived OCPs from diseased mice expressed a higher level of SCFA receptors than that of control mice and that the progenitor cells in the bone marrow of SCFA-treated mice presented a modified transcriptomic landscape, suggesting a direct impact of SCFAs on bone marrow progenitors in the context of osteoporosis. CONCLUSION/CONCLUSIONS:We demonstrated how gut microbiota-derived SCFAs can regulate distal pathology, i.e., osteoporosis, and identified a potential therapeutic option for restoring bone density in rheumatic disease, further highlighting the critical role of the gut-bone axis in these disorders.
PMID: 37994265
ISSN: 2326-5205
CID: 5608662
Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer
Pillai, Ray; LeBoeuf, Sarah E; Hao, Yuan; New, Connie; Blum, Jenna L E; Rashidfarrokhi, Ali; Huang, Shih Ming; Bahamon, Christian; Wu, Warren L; Karadal-Ferrena, Burcu; Herrera, Alberto; Ivanova, Ellie; Cross, Michael; Bossowski, Jozef P; Ding, Hongyu; Hayashi, Makiko; Rajalingam, Sahith; Karakousi, Triantafyllia; Sayin, Volkan I; Khanna, Kamal M; Wong, Kwok-Kin; Wild, Robert; Tsirigos, Aristotelis; Poirier, John T; Rudin, Charles M; Davidson, Shawn M; Koralov, Sergei B; Papagiannakopoulos, Thales
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.
PMID: 38536921
ISSN: 2375-2548
CID: 5644942
mRNA COVID-19 vaccine elicits potent adaptive immune response without the acute inflammation of SARS-CoV-2 infection
Ivanova, Ellie N; Shwetar, Jasmine; Devlin, Joseph C; Buus, Terkild B; Gray-Gaillard, Sophie; Koide, Akiko; Cornelius, Amber; Samanovic, Marie I; Herrera, Alberto; Mimitou, Eleni P; Zhang, Chenzhen; Karmacharya, Trishala; Desvignes, Ludovic; Ødum, Niels; Smibert, Peter; Ulrich, Robert J; Mulligan, Mark J; Koide, Shohei; Ruggles, Kelly V; Herati, Ramin S; Koralov, Sergei B
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.
PMID: 38213787
ISSN: 2589-0042
CID: 5755392
KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance
Zavitsanou, Anastasia-Maria; Pillai, Ray; Hao, Yuan; Wu, Warren L; Bartnicki, Eric; Karakousi, Triantafyllia; Rajalingam, Sahith; Herrera, Alberto; Karatza, Angeliki; Rashidfarrokhi, Ali; Solis, Sabrina; Ciampricotti, Metamia; Yeaton, Anna H; Ivanova, Ellie; Wohlhieter, Corrin A; Buus, Terkild B; Hayashi, Makiko; Karadal-Ferrena, Burcu; Pass, Harvey I; Poirier, John T; Rudin, Charles M; Wong, Kwok-Kin; Moreira, Andre L; Khanna, Kamal M; Tsirigos, Aristotelis; Papagiannakopoulos, Thales; Koralov, Sergei B
Lung cancer treatment has benefited greatly through advancements in immunotherapies. However, immunotherapy often fails in patients with specific mutations like KEAP1, which are frequently found in lung adenocarcinoma. We established an antigenic lung cancer model and used it to explore how Keap1 mutations remodel the tumor immune microenvironment. Using single-cell technology and depletion studies, we demonstrate that Keap1-mutant tumors diminish dendritic cell and T cell responses driving immunotherapy resistance. This observation was corroborated in patient samples. CRISPR-Cas9-mediated gene targeting revealed that hyperactivation of the NRF2 antioxidant pathway is responsible for diminished immune responses in Keap1-mutant tumors. Importantly, we demonstrate that combining glutaminase inhibition with immune checkpoint blockade can reverse immunosuppression, making Keap1-mutant tumors susceptible to immunotherapy. Our study provides new insight into the role of KEAP1 mutations in immune evasion, paving the way for novel immune-based therapeutic strategies for KEAP1-mutant cancers.
PMID: 37889752
ISSN: 2211-1247
CID: 5590262
Lower Airway Dysbiosis Augments Lung Inflammatory Injury in Mild-to-Moderate Chronic Obstructive Pulmonary Disease
Sulaiman, Imran; Wu, Benjamin G; Chung, Matthew; Isaacs, Bradley; Tsay, Jun-Chieh J; Holub, Meredith; Barnett, Clea R; Kwok, Benjamin; Kugler, Matthias C; Natalini, Jake G; Singh, Shivani; Li, Yonghua; Schluger, Rosemary; Carpenito, Joseph; Collazo, Destiny; Perez, Luisanny; Kyeremateng, Yaa; Chang, Miao; Campbell, Christina D; Hansbro, Philip M; Oppenheimer, Beno W; Berger, Kenneth I; Goldring, Roberta M; Koralov, Sergei B; Weiden, Michael D; Xiao, Rui; D'Armiento, Jeanine; Clemente, Jose C; Ghedin, Elodie; Segal, Leopoldo N
PMID: 37677136
ISSN: 1535-4970
CID: 5606572
Endolysin inhibits skin colonization by patient-derived Staphylococcus aureus and malignant T cell activation in cutaneous T cell lymphoma
Pallesen, Emil M H; Gluud, Maria; Vadivel, Chella K; Buus, Terkild B; de Rooij, Bob; Zeng, Ziao; Ahmad, Sana; Willerslev-Olsen, Andreas; Röhrig, Christian; Kamstrup, Maria R; Bay, Lene; Lindahl, Lise; Krejsgaard, Thorbjørn; Geisler, Carsten; Bonefeld, Charlotte M; Iversen, Lars; Woetmann, Anders; Koralov, Sergei B; Bjarnsholt, Thomas; Frieling, Johan; Schmelcher, Mathias; Ødum, Niels
Staphylococcus aureus (S. aureus) is suspected to fuel disease activity in cutaneous T cell lymphomas (CTCL). Here we investigate the effect of a recombinant, anti-bacterial protein, endolysin, XZ.700, on S. aureus skin colonization and malignant T cell activation. We show that endolysin strongly inhibits proliferation of S. aureus isolated from CTCL skin and significantly decreases S. aureus bacterial cell counts in a dose-dependent manner. Likewise, ex vivo colonization of both healthy and lesional skin by S. aureus is profoundly inhibited by endolysin. Moreover, endolysin inhibits the patient-derived S. aureus induction of Interferon-gamma (IFNγ) and IFNγ-inducible chemokine CXCL10 in healthy skin. Whereas patient-derived S. aureus stimulates activation and proliferation of malignant T cells in vitro through an indirect mechanism involving non-malignant T cells, endolysin strongly inhibits the effects of S. aureus on activation (reduced CD25 and STAT5 phosphorylation) and proliferation (reduced Ki67) of malignant T cells and cell lines in the presence of non-malignant T cells. Taken together, we provide evidence that endolysin XZ.700 inhibits skin colonization, chemokine expression, and proliferation of pathogenic S. aureus, and blocks their potential tumor-promoting effects on malignant T cells.
PMID: 36889662
ISSN: 1523-1747
CID: 5432822
A comparative study of in vitro air-liquid interface culture models of the human airway epithelium evaluating cellular heterogeneity and gene expression at single cell resolution
Prescott, Rachel A; Pankow, Alec P; de Vries, Maren; Crosse, Keaton M; Patel, Roosheel S; Alu, Mark; Loomis, Cynthia; Torres, Victor; Koralov, Sergei; Ivanova, Ellie; Dittmann, Meike; Rosenberg, Brad R
BACKGROUND:The airway epithelium is composed of diverse cell types with specialized functions that mediate homeostasis and protect against respiratory pathogens. Human airway epithelial (HAE) cultures at air-liquid interface are a physiologically relevant in vitro model of this heterogeneous tissue and have enabled numerous studies of airway disease. HAE cultures are classically derived from primary epithelial cells, the relatively limited passage capacity of which can limit experimental methods and study designs. BCi-NS1.1, a previously described and widely used basal cell line engineered to express hTERT, exhibits extended passage lifespan while retaining the capacity for differentiation to HAE. However, gene expression and innate immune function in BCi-NS1.1-derived versus primary-derived HAE cultures have not been fully characterized. METHODS:BCi-NS1.1-derived HAE cultures (n = 3 independent differentiations) and primary-derived HAE cultures (n = 3 distinct donors) were characterized by immunofluorescence and single cell RNA-Seq (scRNA-Seq). Innate immune functions were evaluated in response to interferon stimulation and to infection with viral and bacterial respiratory pathogens. RESULTS:We confirm at high resolution that BCi-NS1.1- and primary-derived HAE cultures are largely similar in morphology, cell type composition, and overall gene expression patterns. While we observed cell-type specific expression differences of several interferon stimulated genes in BCi-NS1.1-derived HAE cultures, we did not observe significant differences in susceptibility to infection with influenza A virus and Staphylococcus aureus. CONCLUSIONS:Taken together, our results further support BCi-NS1.1-derived HAE cultures as a valuable tool for the study of airway infectious disease.
PMID: 37635251
ISSN: 1465-993x
CID: 5606922
Discrete immune response signature to SARS-CoV-2 mRNA vaccination versus infection
Ivanova, Ellie N; Devlin, Joseph C; Buus, Terkild B; Koide, Akiko; Cornelius, Amber; Samanovic, Marie I; Herrera, Alberto; Zhang, Chenzhen; Desvignes, Ludovic; Odum, Niels; Ulrich, Robert; Mulligan, Mark J; Koide, Shohei; Ruggles, Kelly V; Herati, Ramin S; Koralov, Sergei B
Both SARS-CoV-2 infection and vaccination elicit potent immune responses. A number of studies have described immune responses to SARS-CoV-2 infection. However, beyond antibody production, immune responses to COVID-19 vaccines remain largely uncharacterized. Here, we performed multimodal single-cell sequencing on peripheral blood of patients with acute COVID-19 and healthy volunteers before and after receiving the SARS-CoV-2 BNT162b2 mRNA vaccine to compare the immune responses elicited by the virus and by this vaccine. Phenotypic and transcriptional profiling of immune cells, coupled with reconstruction of the B and T cell antigen receptor rearrangement of individual lymphocytes, enabled us to characterize and compare the host responses to the virus and to defined viral antigens. While both infection and vaccination induced robust innate and adaptive immune responses, our analysis revealed significant qualitative differences between the two types of immune challenges. In COVID-19 patients, immune responses were characterized by a highly augmented interferon response which was largely absent in vaccine recipients. Increased interferon signaling likely contributed to the observed dramatic upregulation of cytotoxic genes in the peripheral T cells and innate-like lymphocytes in patients but not in immunized subjects. Analysis of B and T cell receptor repertoires revealed that while the majority of clonal B and T cells in COVID-19 patients were effector cells, in vaccine recipients clonally expanded cells were primarily circulating memory cells. Importantly, the divergence in immune subsets engaged, the transcriptional differences in key immune populations, and the differences in maturation of adaptive immune cells revealed by our analysis have far-ranging implications for immunity to this novel pathogen.
PMCID:8077568
PMID: 33907755
ISSN: n/a
CID: 4852132
Tumor-intrinsic LKB1-LIF signaling axis establishes a myeloid niche to promote immune evasion and tumor growth
Rashidfarrokhi, Ali; Pillai, Ray; Hao, Yuan; Wu, Warren L; Karadal-Ferrena, Burcu; Dimitriadoy, Sofia G; Cross, Michael; Yeaton, Anna H; Huang, Shih Ming; Bhutkar, Arjun J; Herrera, Alberto; Rajalingam, Sahith; Hayashi, Makiko; Huang, Kuan-Lin; Bartnicki, Eric; Zavitsanou, Anastasia-Maria; Wohlhieter, Corrin A; Leboeuf, Sarah E; Chen, Ting; Loomis, Cynthia; Mezzano, Valeria; Kulicke, Ruth; Davis, Fred P; Stransky, Nicolas; Smolen, Gromoslaw A; Rudin, Charles M; Moreira, Andre L; Khanna, Kamal M; Pass, Harvey I; Wong, Kwok-Kin; Koide, Shohei; Tsirigos, Aristotelis; Koralov, Sergei B; Papagiannakopoulos, Thales
Tumor mutations can influence the surrounding microenvironment leading to suppression of anti-tumor immune responses and thereby contributing to tumor progression and failure of cancer therapies. Here we use genetically engineered lung cancer mouse models and patient samples to dissect how LKB1 mutations accelerate tumor growth by reshaping the immune microenvironment. Comprehensive immune profiling of LKB1 -mutant vs wildtype tumors revealed dramatic changes in myeloid cells, specifically enrichment of Arg1 + interstitial macrophages and SiglecF Hi neutrophils. We discovered a novel mechanism whereby autocrine LIF signaling in Lkb1 -mutant tumors drives tumorigenesis by reprogramming myeloid cells in the immune microenvironment. Inhibiting LIF signaling in Lkb1 -mutant tumors, via gene targeting or with a neutralizing antibody, resulted in a striking reduction in Arg1 + interstitial macrophages and SiglecF Hi neutrophils, expansion of antigen specific T cells, and inhibition of tumor progression. Thus, targeting LIF signaling provides a new therapeutic approach to reverse the immunosuppressive microenvironment of LKB1 -mutant tumors.
PMCID:10370066
PMID: 37502974
ISSN: 2692-8205
CID: 5743132