Searched for: in-biosketch:yes
person:lcc4
DNA damage, DNA repair and carcinogenicity: Tobacco smoke versus electronic cigarette aerosol
Tang, Moon-Shong; Lee, Hyun-Wook; Weng, Mao-Wen; Wang, Hsiang-Tsui; Hu, Yu; Chen, Lung-Chi; Park, Sung-Hyun; Chan, Huei-Wei; Xu, Jiheng; Wu, Xue-Ru; Wang, He; Yang, Rui; Galdane, Karen; Jackson, Kathryn; Chu, Annie; Halzack, Elizabeth
The allure of tobacco smoking is linked to the instant gratification provided by inhaled nicotine. Unfortunately, tobacco curing and burning generates many mutagens including more than 70 carcinogens. There are two types of mutagens and carcinogens in tobacco smoke (TS): direct DNA damaging carcinogens and procarcinogens, which require metabolic activation to become DNA damaging. Recent studies provide three new insights on TS-induced DNA damage. First, two major types of TS DNA damage are induced by direct carcinogen aldehydes, cyclic-1,N2-hydroxy-deoxyguanosine (γ-OH-PdG) and α-methyl-1, N2-γ-OH-PdG, rather than by the procarcinogens, polycyclic aromatic hydrocarbons and aromatic amines. Second, TS reduces DNA repair proteins and activity levels. TS aldehydes also prevent procarcinogen activation. Based on these findings, we propose that aldehydes are major sources of TS induce DNA damage and a driving force for carcinogenesis. E-cigarettes (E-cigs) are designed to deliver nicotine in an aerosol state, without burning tobacco. E-cigarette aerosols (ECAs) contain nicotine, propylene glycol and vegetable glycerin. ECAs induce O6-methyl-deoxyguanosines (O6-medG) and cyclic γ-hydroxy-1,N2--propano-dG (γ-OH-PdG) in mouse lung, heart and bladder tissues and causes a reduction of DNA repair proteins and activity in lungs. Nicotine and nicotine-derived nitrosamine ketone (NNK) induce the same types of DNA adducts and cause DNA repair inhibition in human cells. After long-term exposure, ECAs induce lung adenocarcinoma and bladder urothelial hyperplasia in mice. We propose that E-cig nicotine can be nitrosated in mouse and human cells becoming nitrosamines, thereby causing two carcinogenic effects, induction of DNA damage and inhibition of DNA repair, and that ECA is carcinogenic in mice. Thus, this article reviews the newest literature on DNA adducts and DNA repair inhibition induced by nicotine and ECAs in mice and cultured human cells, and provides insights into ECA carcinogenicity in mice.
PMID: 35690412
ISSN: 1388-2139
CID: 5248622
A Regulatory Role of Chemokine Receptor CXCR3 in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Emphysema
Li, Lun; Liu, Yi; Chiu, Chin; Jin, Yang; Zhou, Weixun; Peng, Min; Chen, Lung-Chi; Sun, Qinghua; Gao, Jinming
Chronic obstructive pulmonary disease (COPD)/pulmonary emphysema is driven by the dysregulated airway inflammation and primarily influenced by the interaction between cigarette smoking (CS) and the individual's susceptibility. The inflammation in COPD involves both innate and adaptive immunity. By binding to its specific ligands, chemokine receptor CXCR3 plays an important role in regulating tissue inflammation and damage. In acute animal model challenged with either CS or pathogens, CXCR3 knockout (KO) attenuated lung inflammation and pathology. However, the role of CXCR3 in CS-induced chronic airway inflammation and pulmonary emphysema remains unknown. In this present study, we investigated the effect of CXCR3 in CS-induced pulmonary emphysema in an animal model, and the association between CXCR3 single nucleotide polymorphisms (SNPs) and COPD susceptibility in human subjects. We found that after chronic exposure to side stream CS (SSCS) for 24 weeks, CXCR3 KO mice demonstrated significant airspace enlargement expressed by mean linear intercept (Lm) compared with the wild-type (WT) mice. Consistently, CXCR3 KO mice had significantly higher BAL fluid macrophages and neutrophils, TNFα, and lung homogenate MMP-9 and MMP-12. Through genetic analysis of CXCR3 polymorphisms in a cohort of COPD patients with Han Chinese ethnicity, one CXCR3 SNP, rs2280964, was found to be genetically related to COPD susceptibility. Furthermore, CXCR3 SNP rs2280964 was significantly associated with the levels of serum MMP-9 in COPD patients. Our data from both animal and human studies revealed a novel role of CXCR3 possibly via influencing MMP9 production in the pathogenesis and progression of CS-associated COPD/pulmonary emphysema.
PMID: 33415536
ISSN: 1573-2576
CID: 4751392
Longitudinal impact on rat cardiac tissue transcriptomic profiles due to acute intratracheal inhalation exposures to isoflurane
Park, Sung-Hyun; Lu, Yuting; Shao, Yongzhao; Prophete, Colette; Horton, Lori; Sisco, Maureen; Lee, Hyun-Wook; Kluz, Thomas; Sun, Hong; Costa, Max; Zelikoff, Judith; Chen, Lung-Chi; Cohen, Mitchell D
Isoflurane (ISO) is a widely used inhalation anesthetic in experiments with rodents and humans during surgery. Though ISO has not been reported to impart long-lasting side effects, it is unknown if ISO can influence gene regulation in certain tissues, including the heart. Such changes could have important implications for use of this anesthetic in patients susceptible to heart failure/other cardiac abnormalities. To test if ISO could alter gene regulation/expression in heart tissues, and if such changes were reversible, prolonged, or late onset with time, SHR (spontaneously hypertensive) rats were exposed by intratracheal inhalation to a 97.5% air/2.5% ISO mixture on two consecutive days (2 hr/d). Control rats breathed filtered air only. On Days 1, 30, 240, and 360 post-exposure, rat hearts were collected and total RNA was extracted from the left ventricle for global gene expression analysis. The data revealed differentially-expressed genes (DEG) in response to ISO (compared to naïve control) at all post-exposure timepoints. The data showed acute ISO exposures led to DEG associated with wounding, local immune function, inflammation, and circadian rhythm regulation at Days 1 and 30; these effects dissipated by Day 240. There were other significantly-increased DEG induced by ISO at Day 360; these included changes in expression of genes associated with cell signaling, differentiation, and migration, extracellular matrix organization, cell-substrate adhesion, heart development, and blood pressure regulation. Examination of consistent DEG at Days 240 and 360 indicated late onset DEG reflecting potential long-lasting effects from ISO; these included DEG associated with oxidative phosphorylation, ribosome, angiogenesis, mitochondrial translation elongation, and focal adhesion. Together, the data show acute repeated ISO exposures could impart variable effects on gene expression/regulation in the heart. While some alterations self-resolved, others appeared to be long-lasting or late onset. Whether such changes occur in all rat models or in humans remains to be investigated.
PMCID:8516213
PMID: 34648499
ISSN: 1932-6203
CID: 5046652
Sex-dependent effects of ambient PM2.5 pollution on insulin sensitivity and hepatic lipid metabolism in mice
Li, Ran; Sun, Qing; Lam, Sin Man; Chen, Rucheng; Zhu, Junyao; Gu, Weijia; Zhang, Lu; Tian, He; Zhang, Kezhong; Chen, Lung-Chi; Sun, Qinghua; Shui, Guanghou; Liu, Cuiqing
BACKGROUND & AIMS:modulates hepatic lipid metabolism. METHODS:exposure-induced metabolic disorder. RESULTS:-induced metabolic dysfunction. CONCLUSIONS:exposure inhibited HPA axis and demonstrated sex-associated differences in its effects on IR and disorder of hepatic lipid metabolism. These findings provide new mechanistic evidence of hormone regulation in air pollution-mediated metabolic abnormalities of lipids and more personalized care should be considered in terms of sex-specific risk factors.
PMCID:7178763
PMID: 32321544
ISSN: 1743-8977
CID: 4464332
Impact on rats from acute intratracheal inhalation exposures to WTC dusts
Cohen, Mitchell D; Prophete, Colette; Horton, Lori; Sisco, Maureen; Park, Sung-Hyun; Lee, Hyun-Wook; Zelikoff, Judith; Chen, Lung-Chi
Background: Studies have revealed the increased incidence of health disorders in First Responders (FR) who were at Ground Zero over the initial 72 hr after the World Trade Center (WTC) collapses. Previous studies in rats exposed to WTC dusts using exposure scenarios that mimicked FR mouthbreathing showed exposure led to altered expression of genes whose products could be involved in lung ailments. Nevertheless, it was uncertain if repeated exposures (as occurred in earliest days post-disaster) might have given rise to long-term changes in the lungs/other organs, in white blood cell (WBC) profiles, and/or systemic expression of select (mostly immune-related) proteins.Methods: To examine this, rats were exposed on 2 consecutive days (2 hr/d, intratracheal inhalation) to WTC dusts and then examined over a 1-yr period thereafter. At select times post-exposure, organ (lung, heart, liver, kidney, spleen) weights, WBC profiles, and blood levels of a variety of proteins were evaluated.Results: The study showed that over the 1-yr period, there were nominal effects on organ weights (absolute, index) as a result of the dust exposures. There were significant changes (relative to in naïve rats) in WBC profiles, with exposed rats having increased monocyte-macrophage and decreased lymphocyte percentages. The study also found that dust exposure led to significant systemic increases in many proteins, including MCP-1, RANTES, MMP-9, RAGE, and Galectin-3.Conclusions: These results provide further support for our longstanding hypothesis that the WTC dusts could potentially have acted as direct inducers of many of the health effects that have been seen in the exposed FR.
PMID: 32448006
ISSN: 1091-7691
CID: 4510282
World Trade Center (WTC) dust
Chapter by: Cohen, Mitchell D; Chen, Lung-Chi; Lippmann, Morton
in: Environmental toxicants : human exposures and their health effects by Lippmann, Morton; Leikauf, George D (Eds)
Hoboken, NJ : Wiley, 2020
pp. 973-997
ISBN: 9781119438915
CID: 4584082
Cardiopulmonary effects of nanomaterials
Chapter by: Saunders, Eric; Chen, Lung-Chi; Gordon, Terry; Lippmann, Morton
in: Environmental toxicants : human exposures and their health effects by Lippmann, Morton; Leikauf, George D (Eds)
Hoboken, NJ : Wiley, 2020
pp. 695-719
ISBN: 9781119438915
CID: 4584152
Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice
Tang, Moon-Shong; Wu, Xue-Ru; Lee, Hyun-Wook; Xia, Yong; Deng, Fang-Ming; Moreira, Andre L; Chen, Lung-Chi; Huang, William C; Lepor, Herbert
Electronic-cigarettes (E-cigs) are marketed as a safe alternative to tobacco to deliver the stimulant nicotine, and their use is gaining in popularity, particularly among the younger population. We recently showed that mice exposed to short-term (12 wk) E-cig smoke (ECS) sustained extensive DNA damage in lungs, heart, and bladder mucosa and diminished DNA repair in lungs. Nicotine and its nitrosation product, nicotine-derived nitrosamine ketone, cause the same deleterious effects in human lung epithelial and bladder urothelial cells. These findings raise the possibility that ECS is a lung and bladder carcinogen in addition to nicotine. Given the fact that E-cig use has become popular in the past decade, epidemiological data on the relationship between ECS and human cancer may not be known for a decade to come. In this study, the carcinogenicity of ECS was tested in mice. We found that mice exposed to ECS for 54 wk developed lung adenocarcinomas (9 of 40 mice, 22.5%) and bladder urothelial hyperplasia (23 of 40 mice, 57.5%). These lesions were extremely rare in mice exposed to vehicle control or filtered air. Current observations that ECS induces lung adenocarcinomas and bladder urothelial hyperplasia, combined with our previous findings that ECS induces DNA damage in the lungs and bladder and inhibits DNA repair in lung tissues, implicate ECS as a lung and potential bladder carcinogen in mice. While it is well established that tobacco smoke poses a huge threat to human health, whether ECS poses any threat to humans is not yet known and warrants careful investigation.
PMID: 31591243
ISSN: 1091-6490
CID: 4129452
Complementary biobank of rodent tissue samples to study the effect of World Trade Center exposure on cancer development
Lieberman-Cribbin, Wil; Tuminello, Stephanie; Gillezeau, Christina; van Gerwen, Maaike; Brody, Rachel; Mulholland, David J; Horton, Lori; Sisco, Maureen; Prophete, Colette; Zelikoff, Judith; Lee, Hyun-Wook; Park, Sung-Hyun; Chen, Lung-Chi; Cohen, Mitchell D; Taioli, Emanuela
World Trade Center (WTC) responders were exposed to mixture of dust, smoke, chemicals and carcinogens. New York University (NYU) and Mount Sinai have recreated WTC exposure in rodents to observe the resulting systemic and local biological responses. These experiments aid in the interpretation of epidemiological observations and are useful for understanding the carcinogenesis process in the exposed human WTC cohort. Here we describe the implementation of a tissue bank system for the rodents experimentally exposed to WTC dust. NYU samples were experimentally exposed to WTC dust via intratracheal inhalation that mimicked conditions in the immediate aftermath of the disaster. Tissue from Mount Sinai was derived from genetically modified mice exposed to WTC dust via nasal instillation. All processed tissues include annotations of the experimental design, WTC dust concentration/dose, exposure route and duration, genetic background of the rodent, and method of tissue isolation/storage. A biobank of tissue from rodents exposed to WTC dust has been compiled representing an important resource for the scientific community. The biobank remains available as a scientific resource for future research through established mechanisms for samples request and utilization. Studies using the WTC tissue bank would benefit from confirming their findings in corresponding tissues from organs of animals experimentally exposed to WTC dust. Studies on rodent tissues will advance the understanding of the biology of the tumors developed by WTC responders and ultimately impact the modalities of treatment, and the probability of success and survival of WTC cancer patients.
PMID: 31601237
ISSN: 1479-5876
CID: 4130062
Prostate Cancer in World Trade Center Responders Demonstrates Evidence of an Inflammatory Cascade
Gong, Yixuan; Wang, Li; Yu, Haocheng; Alpert, Naomi; Cohen, Mitchell D; Prophete, Colette; Horton, Lori; Sisco, Maureen; Park, Sung-Hyun; Lee, Hyun-Wook; Zelikoff, Judith; Chen, Lung-Chi; Suarez-Farinas, Mayte; Donovan, Michael J; Aaronson, Stuart A; Galsky, Matthew; Zhu, Jun; Taioli, Emanuela; Oh, William K
An excess incidence of prostate cancer has been identified among World Trade Center (WTC) responders. In this study, we hypothesized that WTC dust, which contained carcinogens and tumor-promoting agents, could facilitate prostate cancer development by inducing DNA damage, promoting cell proliferation, and causing chronic inflammation. We compared expression of immunologic and inflammatory genes using a NanoString assay on archived prostate tumors from WTC Health Program (WTCHP) patients and non-WTC patients with prostate cancer. Furthermore, to assess immediate and delayed responses of prostate tissue to acute WTC dust exposure via intratracheal inhalation, we performed RNA-seq on the prostate of normal rats that were exposed to moderate to high doses of WTC dust. WTC prostate cancer cases showed significant upregulation of genes involved in DNA damage and G2-M arrest. Cell-type enrichment analysis showed that Th17 cells, a subset of proinflammatory Th cells, were specifically upregulated in WTC patients. In rats exposed to WTC dust, we observed upregulation of gene transcripts of cell types involved in both adaptive immune response (dendritic cells and B cells) and inflammatory response (Th17 cells) in the prostate. Unexpectedly, genes in the cholesterol biosynthesis pathway were also significantly upregulated 30 days after acute dust exposure. Our results suggest that respiratory exposure to WTC dust can induce inflammatory and immune responses in prostate tissue.Implications: WTC-related prostate cancer displayed a distinct gene expression pattern that could be the result of exposure to specific carcinogens. Our data warrant further epidemiologic and cellular mechanistic studies to better understand the consequences of WTC dust exposure.Visual Overview: http://mcr.aacrjournals.org/content/early/2019/06/18/1541-7786.MCR-19-0115/F1.large.jpg.
PMID: 31221798
ISSN: 1557-3125
CID: 3954582