Searched for: in-biosketch:yes
person:liangf01
Capsular Polysaccharide Is Essential for the Virulence of the Antimicrobial-Resistant Pathogen Enterobacter hormaechei
St John, Amelia; Perault, Andrew I; Giacometti, Sabrina I; Sommerfield, Alexis G; DuMont, Ashley L; Lacey, Keenan A; Zheng, Xuhui; Sproch, Julia; Petzold, Chris; Dancel-Manning, Kristen; Gonzalez, Sandra; Annavajhala, Medini; Beckford, Colleen; Zeitouni, Nathalie; Liang, Feng-Xia; van Bakel, Harm; Shopsin, Bo; Uhlemann, Anne-Catrin; Pironti, Alejandro; Torres, Victor J
Nosocomial infections caused by multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) pathogens are on the rise. However, the virulence strategies employed by these pathogens remain elusive. Here, we study the interaction of ECC clinical isolates with human serum to define how this pathogen evades the antimicrobial action of complement, one of the first lines of host-mediated immune defense. We identified a small number of serum-sensitive strains, including Enterobacter hormaechei strain NR3055, which we exploited for the in vitro selection of serum-resistant clones. Comparative genomics between the serum-sensitive NR3055 strain and the isolated serum-resistant clones revealed a premature stop codon in the wzy gene of the capsular polysaccharide biosynthesis locus of NR3055. The complementation of wzy conferred serum resistance to NR3055, prevented the deposition of complement proteins on the bacterial surface, inhibited phagocytosis by human neutrophils, and rendered the bacteria virulent in a mouse model of peritonitis. Mice exposed to a nonlethal dose of encapsulated NR3055 were protected from subsequent lethal infections by encapsulated NR3055, whereas mice that were previously exposed to unencapsulated NR3055 succumbed to infection. Thus, capsule is a key immune evasion determinant for E. hormaechei, and it is a potential target for prophylactics and therapeutics to combat these increasingly MDR human pathogens. IMPORTANCE Infections caused by antimicrobial resistant bacteria are of increasing concern, especially those due to carbapenem-resistant Enterobacteriaceae pathogens. Included in this group are species of the Enterobacter cloacae complex, regarding which there is a paucity of knowledge on the infection biology of the pathogens, despite their clinical relevance. In this study, we combine techniques in comparative genomics, bacterial genetics, and diverse models of infection to establish capsule as an important mechanism of Enterobacter pathogens to resist the antibacterial activity of serum, a first line of host defense against bacterial infections. We also show that immune memory targeting the Enterobacter capsule protects against lethal infection. The further characterization of Enterobacter infection biology and the immune response to infection are needed for the development of therapies and preventative interventions targeting these highly antibiotic resistant pathogens.
PMID: 36779722
ISSN: 2150-7511
CID: 5421192
Nanogold based protein localization enables subcellular visualization of cell junction protein by SBF-SEM
Liang, Feng-Xia; Sall, Joseph; Petzold, Chris; van Opbergen, Chantal J M; Liang, Xiangxi; Delmar, Mario
Recent advances in volume electron microscopy (vEM) allow unprecedented visualization of the electron-dense structures of cells, tissues and model organisms at nanometric resolution in three dimensions (3D). Light-based microscopy has been widely used for specific localization of proteins; however, it is restricted by the diffraction limit of light, and lacks the ability to identify underlying structures. Here, we describe a protocol for ultrastructural detection, in three dimensions, of a protein (Connexin 43) expressed in the intercalated disc region of adult murine heart. Our protocol does not rest on the expression of genetically encoded proteins and it overcomes hurdles related to pre-embedding and immunolabeling, such as the penetration of the label and the preservation of the tissue. The pre-embedding volumetric immuno-electron microscopy (pre-embedding vIEM) protocol presented here combines several practical strategies to balance sample fixation with antigen and ultrastructural preservation, and penetration of labeling with blocking of non-specific antigen binding sites. The small 1.4 nm gold along with surrounded silver used as a detection marker buried in the sample also serves as a functional conductive resin that significantly reduces the charging of samples. Our protocol also presents strategies for facilitating the successful cutting of the samples during serial block-face scanning electron microscopy (SBF-SEM) imaging. Our results suggest that the small gold-based pre-embedding vIEM is an ideal labeling method for molecular localization throughout the depth of the sample at subcellular compartments and membrane microdomains.
PMID: 37451776
ISSN: 0091-679x
CID: 5535332
ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection
Ching, Krystal L; de Vries, Maren; Gago, Juan; Dancel-Manning, Kristen; Sall, Joseph; Rice, William J; Barnett, Clea; Khodadadi-Jamayran, Alireza; Tsirigos, Aristotelis; Liang, Feng-Xia; Thorpe, Lorna E; Shopsin, Bo; Segal, Leopoldo N; Dittmann, Meike; Torres, Victor J; Cadwell, Ken
Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.
PMID: 36099266
ISSN: 1545-7885
CID: 5335192
Intrahepatic microbes govern liver immunity by programming NKT cells
Leinwand, Joshua C; Paul, Bidisha; Chen, Ruonan; Xu, Fangxi; Sierra, Maria A; Paluru, Madan M; Nanduri, Sumant; Alcantara Hirsch, Carolina G; Shadaloey, Sorin Aa; Yang, Fan; Adam, Salma A; Li, Qianhao; Bandel, Michelle; Gakhal, Inderdeep; Appiah, Lara; Guo, Yuqi; Vardhan, Mridula; Flaminio, Zia J; Grodman, Emilie R; Mermelstein, Ari; Wang, Wei; Diskin, Brian; Aykut, Berk; Khan, Mohammed; Werba, Gregor; Pushalkar, Smruti; McKinstry, Mia; Kluger, Zachary; Park, Jaimie J; Hsieh, Brandon; Dancel-Manning, Kristen; Liang, Feng-Xia; Park, James S; Saxena, Anjana; Li, Xin; Theise, Neil D; Saxena, Deepak; Miller, George
The gut microbiome shapes local and systemic immunity. The liver is presumed to be a protected sterile site. As such, a hepatic microbiome has not been examined. Here, we showed a liver microbiome in mice and humans that is distinct from the gut and is enriched in Proteobacteria. It undergoes dynamic alterations with age and is influenced by the environment and host physiology. Fecal microbial transfer experiments revealed that the liver microbiome is populated from the gut in a highly selective manner. Hepatic immunity is dependent on the microbiome, specifically Bacteroidetes species. Targeting Bacteroidetes with oral antibiotics reduced hepatic immune cells by ~90%, prevented APC maturation, and mitigated adaptive immunity. Mechanistically, our findings are consistent with presentation of Bacteroidetes-derived glycosphingolipids to NKT cells promoting CCL5 signaling, which drives hepatic leukocyte expansion and activation, among other possible host-microbe interactions. Collectively, we reveal a microbial - glycosphingolipid - NKT - CCL5 axis that underlies hepatic immunity.
PMID: 35175938
ISSN: 1558-8238
CID: 5163572
Regulators of tubulin polyglutamylation control nuclear shape and cilium disassembly by balancing microtubule and actin assembly
Wang, Lei; Paudyal, Sharad C; Kang, Yuchen; Owa, Mikito; Liang, Feng-Xia; Spektor, Alexander; Knaut, Holger; Sánchez, Irma; Dynlacht, Brian D
Cytoskeletal networks play an important role in regulating nuclear morphology and ciliogenesis. However, the role of microtubule (MT) post-translational modifications in nuclear shape regulation and cilium disassembly has not been explored. Here we identified a novel regulator of the tubulin polyglutamylase complex (TPGC), C11ORF49/CSTPP1, that regulates cytoskeletal organization, nuclear shape, and cilium disassembly. Mechanistically, loss of C11ORF49/CSTPP1 impacts the assembly and stability of the TPGC, which modulates long-chain polyglutamylation levels on microtubules (MTs) and thereby balances the binding of MT-associated proteins and actin nucleators. As a result, loss of TPGC leads to aberrant, enhanced assembly of MTs that penetrate the nucleus, which in turn leads to defects in nuclear shape, and disorganization of cytoplasmic actin that disrupts the YAP/TAZ pathway and cilium disassembly. Further, we showed that C11ORF49/CSTPP1-TPGC plays mechanistically distinct roles in the regulation of nuclear shape and cilium disassembly. Remarkably, disruption of C11ORF49/CSTPP1-TPGC also leads to developmental defects in vivo. Our findings point to an unanticipated nexus that links tubulin polyglutamylation with nuclear shape and ciliogenesis.
PMID: 34782749
ISSN: 1748-7838
CID: 5049022
APOL1 variant-expressing endothelial cells exhibit autophagic dysfunction and mitochondrial stress
Blazer, Ashira; Qian, Yingzhi; Schlegel, Martin Paul; Algasas, Huda; Buyon, Jill P; Cadwell, Ken; Cammer, Michael; Heffron, Sean P; Liang, Feng-Xia; Mehta-Lee, Shilpi; Niewold, Timothy; Rasmussen, Sara E; Clancy, Robert M
Polymorphisms in the Apolipoprotein L1 (APOL1) gene are common in ancestrally African populations, and associate with kidney injury and cardiovascular disease. These risk variants (RV) provide an advantage in resisting Trypanosoma brucei, the causal agent of African trypanosomiasis, and are largely absent from non-African genomes. Clinical associations between the APOL1 high risk genotype (HRG) and disease are stronger in those with comorbid infectious or immune disease. To understand the interaction between cytokine exposure and APOL1 cytotoxicity, we established human umbilical vein endothelial cell (HUVEC) cultures representing each APOL1 genotype. Untreated HUVECs were compared to IFNÉ£-exposed; and APOL1 expression, mitochondrial function, lysosome integrity, and autophagic flux were measured. IFNÉ£ increased median APOL1 expression across all genotypes 22.1 (8.3 to 29.8) fold (p=0.02). Compared to zero risk variant-carrying HUVECs (0RV), HUVECs carrying 2 risk variant copies (2RV) showed both depressed baseline and maximum mitochondrial oxygen consumption (p<0.01), and impaired mitochondrial networking on MitoTracker assays. These cells also demonstrated a contracted lysosomal compartment, and an accumulation of autophagosomes suggesting a defect in autophagic flux. Upon blocking autophagy with non-selective lysosome inhibitor, hydroxychloroquine, autophagosome accumulation between 0RV HUVECs and untreated 2RV HUVECs was similar, implicating lysosomal dysfunction in the HRG-associated autophagy defect. Compared to 0RV and 2RV HUVECs, HUVECs carrying 1 risk variant copy (1RV) demonstrated intermediate mitochondrial respiration and autophagic flux phenotypes, which were exacerbated with IFNÉ£ exposure. Taken together, our data reveal that IFNÉ£ induces APOL1 expression, and that each additional RV associates with mitochondrial dysfunction and autophagy inhibition. IFNÉ£ amplifies this phenotype even in 1RV HUVECs, representing the first description of APOL1 pathobiology in variant heterozygous cell cultures.
PMCID:9551299
PMID: 36238153
ISSN: 1664-8021
CID: 5361182
"Orphan" Connexin43 in Plakophilin-2 Deficient Hearts Revealed by Volume Electron Microscopy
van Opbergen, Chantal J M; Sall, Joseph; Petzold, Chris; Dancel-Manning, Kristen; Delmar, Mario; Liang, Feng-Xia
Previous studies revealed an abundance of functional Connexin43 (Cx43) hemichannels consequent to loss of plakophilin-2 (PKP2) expression in adult murine hearts. The increased Cx43-mediated membrane permeability is likely responsible for excess entry of calcium into the cells, leading to an arrhythmogenic/cardiomyopathic phenotype. The latter has translational implications to the molecular mechanisms of inheritable arrhythmogenic right ventricular cardiomyopathy (ARVC). Despite functional evidence, visualization of these "orphan" (i.e., non-paired in a gap junction configuration) Cx43 hemichannels remains lacking. Immuno-electron microscopy (IEM) remains an extremely powerful tool to localize, with nanometric resolution, a protein within its native structural landscape. Yet, challenges for IEM are to preserve the antigenicity of the molecular target and to provide access for antibodies to reach their target, while maintaining the cellular/tissue ultrastructure. Fixation is important for maintaining cell structure, but strong fixation and vigorous dehydration (as it is routine for EM) can alter protein structure, thus impairing antigen-antibody binding. Here, we implemented a method to combine pre-embedding immunolabeling (pre-embedding) with serial block-face scanning electron microscopy (SBF-SEM). We utilized a murine model of cardiomyocyte-specific, Tamoxifen (TAM) activated knockout of PKP2. Adult hearts were harvested 14 days post-TAM, at this time hearts present a phenotype of concealed ARVC (i.e., an arrhythmogenic phenotype but no overt structural disease). Thick (200 µm) vibratome slices were immunolabelled for Cx43 and treated with nanogold or FluoroNanogold, coupled with a silver enhancement. Left or right ventricular free walls were dissected and three-dimensional (3D) localization of Cx43 in cardiac muscle was performed using SBF-SEM. Reconstructed images allowed us to visualize the entire length of gap junction plaques, seen as two parallel, closely packed strings of Cx43-immunoreactive beads at the intercalated disc. In contrast, in PKP2-deficient hearts we observed bulging of the intercellular space, and entire areas where only one of the two strings could be observed, indicating the presence of orphan Cx43. We conclude that pre-embedding and SBF-SEM allowed visualization of cardiac Cx43 plaques in their native environment, providing for the first time a visual complement of functional data indicating the presence of orphan Cx43 hemichannels resulting from loss of desmosomal integrity in the heart.
PMCID:9159532
PMID: 35663385
ISSN: 2296-634x
CID: 5283052
ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection
Ching, Krystal L; de Vries, Maren; Gago, Juan; Dancel-Manning, Kristen; Sall, Joseph; Rice, William J; Barnett, Clea; Liang, Feng-Xia; Thorpe, Lorna E; Shopsin, Bo; Segal, Leopoldo N; Dittmann, Meike; Torres, Victor J; Cadwell, Ken
Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19. Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchioalveolar lavage fluid from critically ill COVID-19 patients was associated with reduced ICU and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.
PMID: 34981050
ISSN: 2692-8205
CID: 5883272
Neural cell adhesion molecule is required for ventricular conduction system development
Delgado, Camila; Bu, Lei; Zhang, Jie; Liu, Fang-Yu; Sall, Joseph; Liang, Feng-Xia; Furley, Andrew J; Fishman, Glenn I
The most distal portion of the ventricular conduction system (VCS) contains cardiac Purkinje cells (PCs), which are essential for synchronous activation of the ventricular myocardium. Contactin-2 (CNTN2), a member of the immunoglobulin superfamily of cell adhesion molecules (IgSF-CAMs), was previously identified as a marker of the VCS. Through differential transcriptional profiling, we discovered two additional highly enriched IgSF-CAMs in the VCS: NCAM-1 and ALCAM. Immunofluorescence staining showed dynamic expression patterns for each IgSF-CAM during embryonic and early postnatal stages, but ultimately all three proteins became highly enriched in mature PCs. Mice deficient in NCAM-1, but not CNTN2 or ALCAM, exhibited defects in PC gene expression and VCS patterning, as well as cardiac conduction disease. Moreover, using ST8sia2 and ST8sia4 knockout mice, we show that inhibition of post-translational modification of NCAM-1 by polysialic acid leads to disrupted trafficking of sarcolemmal intercalated disc proteins to junctional membranes and abnormal expansion of the extracellular space between apposing PCs. Taken together, our data provide insights into the complex developmental biology of the ventricular conduction system.
PMID: 34100064
ISSN: 1477-9129
CID: 4899742
Structural and Functional Characterization of A Nav1.5-Mitochondrial Couplon
Pérez-Hernández Duran, Marta; Leo-Macias, Alejandra; Keegan, Sarah; Jouni, Mariam; Kim, Joon-Chul; Agullo-Pascual, Esperanza; Vermij, Sarah H; Zhang, Mingliang; Liang, Feng-Xia; Burridge, Paul; Fenyo, David; Rothenberg, Eli; Delmar, Mario
Rationale: The cardiac sodium channel NaV1.5 has a fundamental role in excitability and conduction. Previous studies have shown that sodium channels cluster together in specific cellular subdomains. Their association with intracellular organelles in defined regions of the myocytes, and the functional consequences of that association, remain to be defined. Objective: To characterize a subcellular domain formed by sodium channel clusters in the crest region of the myocytes, and the subjacent subsarcolemmal mitochondria (SSM).Methods and Results: Through a combination of imaging approaches including super-resolution microscopy and electron microscopy we identified, in adult cardiac myocytes, a NaV1.5 subpopulation in close proximity to SSM; we further found that SSM preferentially host the mitochondrial Na+/Ca2+ exchanger (NCLX). This anatomical proximity led us to investigate functional changes in mitochondria resulting from sodium channel activity. Upon TTX exposure, mitochondria near NaV1.5 channels accumulated more Ca2+ and showed increased ROS production when compared to interfibrillar mitochondria. Finally, crosstalk between NaV1.5 channels and mitochondria was analyzed at a transcriptional level. We found that SCN5A and SLC8B1 (which encode NaV1.5 and NCLX, respectively) are negatively correlated both in a human transcriptome dataset (GTEx) and in human-induced pluripotent stem cell-derived cardiac myocytes deficient in SCN5A. Conclusions: We describe an anatomical hub (a couplon) formed by sodium channel clusters and SSM. Preferential localization of NCLX to this domain allows for functional coupling where the extrusion of Ca2+ from the mitochondria is powered, at least in part, by the entry of sodium through NaV1.5 channels. These results provide a novel entry-point into a mechanistic understanding of the intersection between electrical and structural functions of the heart.
PMID: 33342222
ISSN: 1524-4571
CID: 4726042