Searched for: in-biosketch:yes
person:lokep01
Gut microbiome of helminth-infected indigenous Malaysians is context dependent
Tee, Mian Zi; Er, Yi Xian; Easton, Alice V; Yap, Nan Jiun; Lee, Ii Li; Devlin, Joseph; Chen, Ze; Ng, Kee Seong; Subramanian, Poorani; Angelova, Angelina; Oyesola, Oyebola; Sargsian, Shushan; Ngui, Romano; Beiting, Daniel P; Boey, Christopher Chiong Meng; Chua, Kek Heng; Cadwell, Ken; Lim, Yvonne Ai Lian; Loke, P'ng; Lee, Soo Ching
BACKGROUND:While microbiomes in industrialized societies are well characterized, indigenous populations with traditional lifestyles have microbiomes that are more akin to those of ancient humans. However, metagenomic data in these populations remains scarce, and the association with soil-transmitted helminth infection status is unclear. Here, we sequenced 650 metagenomes of indigenous Malaysians from five villages with different prevalence of helminth infections. RESULTS:Individuals from villages with higher prevalences of helminth infections have more unmapped reads and greater microbial diversity. Microbial community diversity and composition were most strongly associated with different villages and the effects of helminth infection status on the microbiome varies by village. Longitudinal changes in the microbiome in response to albendazole anthelmintic treatment were observed in both helminth infected and uninfected individuals. Inference of bacterial population replication rates from origin of replication analysis identified specific replicating taxa associated with helminth infection. CONCLUSIONS:Our results indicate that helminth effects on the microbiota were highly dependent on context, and effects of albendazole on the microbiota can be confounding for the interpretation of deworming studies. Furthermore, a substantial quantity of the microbiome remains unannotated, and this large dataset from an indigenous population associated with helminth infections is a valuable resource for future studies. Video Abstract.
PMCID:9727879
PMID: 36476263
ISSN: 2049-2618
CID: 5378722
Clostridia isolated from helminth-colonized humans promote the life cycle of Trichuris species
Sargsian, Shushan; Chen, Ze; Lee, Soo Ching; Robertson, Amicha; Thur, Rafaela Saes; Sproch, Julia; Devlin, Joseph C; Tee, Mian Zi; Er, Yi Xian; Copin, Richard; Heguy, Adriana; Pironti, Alejandro; Torres, Victor J; Ruggles, Kelly V; Lim, Yvonne A L; Bethony, Jeffrey; Loke, P'ng; Cadwell, Ken
Soil-transmitted intestinal worms known as helminths colonize over 1.5 billion people worldwide. Although helminth colonization has been associated with altered composition of the gut microbiota, such as increases in Clostridia, individual species have not been isolated and characterized. Here, we isolate and sequence the genome of 13 Clostridia from the Orang Asli, an indigenous population in Malaysia with a high prevalence of helminth infections. Metagenomic analysis of 650 fecal samples from urban and rural Malaysians confirm the prevalence of species corresponding to these isolates and reveal a specific association between Peptostreptococcaceae family members and helminth colonization. Remarkably, Peptostreptococcaceae isolated from the Orang Asli display superior capacity to promote the life cycle of whipworm species, including hatching of eggs from Trichuris muris and Trichuris trichiura. These findings support a model in which helminths select for gut colonization of microbes that support their life cycle.
PMID: 36450245
ISSN: 2211-1247
CID: 5374022
Plasmodium falciparum and TNF-α Differentially Regulate Inflammatory and Barrier Integrity Pathways in Human Brain Endothelial Cells
Zuniga, Marisol; Gomes, Claudia; Chen, Ze; Martinez, Criseyda; Devlin, Joseph Cooper; Loke, P'ng; Rodriguez, Ana
Cerebral malaria is a severe complication of Plasmodium falciparum infection characterized by the loss of blood-brain barrier (BBB) integrity, which is associated with brain swelling and mortality in patients. P. falciparum-infected red blood cells and inflammatory cytokines, like tumor necrosis factor alpha (TNF-α), have been implicated in the development of cerebral malaria, but it is still unclear how they contribute to the loss of BBB integrity. Here, a combination of transcriptomic analysis and cellular assays detecting changes in barrier integrity and endothelial activation were used to distinguish between the effects of P. falciparum and TNF-α on a human brain microvascular endothelial cell (HBMEC) line and in primary human brain microvascular endothelial cells. We observed that while TNF-α induced high levels of endothelial activation, it only caused a small increase in HBMEC permeability. Conversely, P. falciparum-infected red blood cells (iRBCs) led to a strong increase in HBMEC permeability that was not mediated by cell death. Distinct transcriptomic profiles of TNF-α and P. falciparum in HBMECs confirm the differential effects of these stimuli, with the parasite preferentially inducing an endoplasmic reticulum stress response. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics. IMPORTANCE Cerebral malaria is a severe complication of Plasmodium falciparum infection that causes the loss of blood-brain barrier integrity and frequently results in death. Here, we compared the effect of P. falciparum-infected red blood cells and inflammatory cytokines, like TNF-α, in the loss of BBB integrity. We observed that while TNF-α induced a small increase in barrier permeability, P. falciparum-infected red blood cells led to a severe loss of barrier integrity. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics.
PMCID:9601155
PMID: 36036514
ISSN: 2150-7511
CID: 5371222
Staphylococcus aureus induces a muted host response in human blood that blunts the recruitment of neutrophils
Zwack, Erin E; Chen, Ze; Devlin, Joseph C; Li, Zhi; Zheng, Xuhui; Weinstock, Ada; Lacey, Keenan A; Fisher, Edward A; Fenyö, David; Ruggles, Kelly V; Loke, P'ng; Torres, Victor J
PMID: 35881802
ISSN: 1091-6490
CID: 5276372
Efficacy of triple dose albendazole treatment for soil-transmitted helminth infections
Tee, Mian Zi; Lee, Soo Ching; Er, Yi Xian; Yap, Nan Jiun; Ngui, Romano; Easton, Alice V; Siow, Vinnie Wei Yin; Ng, Kee Seong; Boey, Christopher Chiong Meng; Chua, Kek Heng; Cadwell, Ken; Loke, P'ng; Lim, Yvonne Ai Lian
In Malaysia, soil-transmitted helminth (STH) infections still persist among indigenous communities. In the past, local studies have focused mostly on epidemiologic aspects of STH infections with a scarcity of information on the efficacy of deworming treatment. The present study consisted of 2 phases: a cross-sectional phase on current epidemiological status and risk factors of STH infections and a longitudinal study over 6 weeks on triple dose albendazole efficacy against STH infections. A total of 253 participants were recruited at baseline and a pre-tested questionnaire was administered to obtain information on socio-demographics, environmental and behavioural risk factors. Stool samples were evaluated using a modified Kato-Katz technique. Cure rate (CR) and egg reduction rate (ERR) were assessed at 3 weeks following a 3-day course of 400mg albendazole treatment and infection status were observed again at 6 weeks. Baseline positivity of trichuriasis, ascariasis and hookworm infections were 56.1%, 11.9% and 20.2%, respectively. Multivariate analysis showed age below 18 years old (P = 0.004), without latrine in house (P = 0.042) and indiscriminate defecation (P = 0.032) were associated with STH infections. In the longitudinal study (N = 89), CR for trichuriasis was 64.6%, while CR of 100% was observed for both ascariasis and hookworm. ERR was above 90% for all three STH species. A rapid increased of Trichuris trichiura egg output was observed at 6 weeks. In conclusion, STH infections are highly prevalent among indigenous communities. Children and teenagers, poor sanitation and hygiene behaviour were determinants for STH infections. Triple dose albendazole is found to be efficacious against Ascaris lumbricoides and hookworm infections but has moderate curative effect with high ERR against T. trichiura. Although triple dose albendazole regimen has logistic challenges and may not be a routine option, consideration of this treatment regime may still be necessary in selective communities to reduce high intensity of T. trichiura infection.
PMID: 35960935
ISSN: 1932-6203
CID: 5287372
TNFR2/14-3-3ε signaling complex instructs macrophage plasticity in inflammation and autoimmunity
Fu, Wenyu; Hu, Wenhuo; Yi, Young-Su; Hettinghouse, Aubryanna; Sun, Guodong; Bi, Yufei; He, Wenjun; Zhang, Lei; Gao, Guanmin; Liu, Jody; Toyo-Oka, Kazuhito; Xiao, Guozhi; Solit, David B; Loke, Png; Liu, Chuan-Ju
TNFR1 and TNFR2 have received prominent attention because of their dominance in the pathogenesis of inflammation and autoimmunity. TNFR1 has been extensively studied and primarily mediates inflammation. TNFR2 remains far less studied, although emerging evidences demonstrate that TNFR2 plays an anti-inflammatory and immunoregulatory role in various conditions and diseases. Herein, we report that TNFR2 regulates macrophage polarization, a highly dynamic process controlled by largely unidentified intracellular regulators. Using biochemical co-purification and mass spectrometry approaches, we isolated the signaling molecule 14-3-3ε as a component of TNFR2 complexes in response to progranulin stimulation in macrophages. In addition, 14-3-3ε was essential for TNFR2 signaling-mediated regulation of macrophage polarization and switch. Both global and myeloid-specific deletion of 14-3-3ε resulted in exacerbated inflammatory arthritis and counteracted the protective effects of progranulin-mediated TNFR2 activation against inflammation and autoimmunity. TNFR2/14-3-3ε signaled through PI3K/Akt/mTOR to restrict NF-κB activation while simultaneously stimulating C/EBPβ activation, thereby instructing macrophage plasticity. Collectively, this study identifies 14-3-3ε as a previously-unrecognized vital component of the TNFR2 receptor complex and provides new insights into the TNFR2 signaling, particularly its role in macrophage polarization with therapeutic implications for various inflammatory and autoimmune diseases with activation of the TNFR2/14-3-3ε anti-inflammatory pathway.
PMID: 34185706
ISSN: 1558-8238
CID: 4937152
IL-13 deficiency exacerbates lung damage and impairs epithelial-derived type 2 molecules during nematode infection
Chenery, Alistair L; Rosini, Silvia; Parkinson, James E; Ajendra, Jesuthas; Herrera, Jeremy A; Lawless, Craig; Chan, Brian Hk; Loke, P'ng; MacDonald, Andrew S; Kadler, Karl E; Sutherland, Tara E; Allen, Judith E
IL-13 is implicated in effective repair after acute lung injury and the pathogenesis of chronic diseases such as allergic asthma. Both these processes involve matrix remodelling, but understanding the specific contribution of IL-13 has been challenging because IL-13 shares receptors and signalling pathways with IL-4. Here, we used Nippostrongylus brasiliensis infection as a model of acute lung damage comparing responses between WT and IL-13-deficient mice, in which IL-4 signalling is intact. We found that IL-13 played a critical role in limiting tissue injury and haemorrhaging in the lung, and through proteomic and transcriptomic profiling, identified IL-13-dependent changes in matrix and associated regulators. We further showed a requirement for IL-13 in the induction of epithelial-derived type 2 effector molecules such as RELM-α and surfactant protein D. Pathway analyses predicted that IL-13 induced cellular stress responses and regulated lung epithelial cell differentiation by suppression of Foxa2 pathways. Thus, in the context of acute lung damage, IL-13 has tissue-protective functions and regulates epithelial cell responses during type 2 immunity.
PMID: 34127548
ISSN: 2575-1077
CID: 4911492
Single Cell Transcriptional Survey of Ileal-Anal Pouch Immune Cells from Ulcerative Colitis Patients
Devlin, Joseph C; Axelrad, Jordan; Hine, Ashley M; Chang, Shannon; Sarkar, Suparna; Lin, Jian-Da; Ruggles, Kelly V; Hudesman, David; Cadwell, Ken; Loke, P'ng
BACKGROUND & AIMS/OBJECTIVE:Restorative proctocolectomy with ileal pouch-anal anastomosis is a surgical procedure in patients with ulcerative colitis refractory to medical therapies. Pouchitis, the most common complication, is inflammation of the pouch of unknown etiology. To define how the intestinal immune system is distinctly organized during pouchitis, we analyzed tissues from patients with and without pouchitis and from patients with ulcerative colitis using single-cell RNA sequencing (scRNA-seq). METHODS:We examined pouch lamina propria CD45+ hematopoietic cells from intestinal tissues of ulcerative colitis patients with (n=15) and without an ileal pouch-anal anastomosis (n=11). Further in silico meta-analysis was performed to generate transcriptional interaction networks and identify biomarkers for patients with inflamed pouches. RESULTS:In addition to tissue-specific signatures, we identified a population of IL1B/LYZ+ myeloid cells and FOXP3/BATF+ T cells that distinguish inflamed tissues which we further validated in other single cell RNA-seq datasets from IBD patients. Cell type specific transcriptional markers obtained from single-cell RNA-sequencing was used to infer representation from bulk RNA sequencing datasets, which further implicated myeloid cells expressing IL1B and S100A8/A9 calprotectin as interacting with stromal cells, and Bacteroidiales and Clostridiales bacterial taxa. We found that non-responsiveness to anti-integrin biologic therapies in ulcerative colitis patients was associated with the signature of IL1B+/LYZ+ myeloid cells in a subset of patients. CONCLUSIONS:Features of intestinal inflammation during pouchitis and ulcerative colitis are similar, which may have clinical implications for the management of pouchitis. scRNA-seq enables meta-analysis of multiple studies, which may facilitate the identification of biomarkers to personalize therapy for IBD patients.
PMID: 33359089
ISSN: 1528-0012
CID: 4731302
Correction: Helminth Colonization Is Associated with Increased Diversity of the Gut Microbiota
Lee, Soo Ching; Tang, Mei San; Lim, Yvonne A L; Choy, Seow Huey; Kurtz, Zachary D; Cox, Laura M; Gundra, Uma Mahesh; Cho, Ilseung; Bonneau, Richard; Blaser, Martin J; Chua, Kek Heng; Loke, P'ng
[This corrects the article DOI: 10.1371/journal.pntd.0002880.].
PMID: 33826625
ISSN: 1935-2735
CID: 4839322
Microbial genetic and transcriptional contributions to oxalate degradation by the gut microbiota in health and disease
Liu, Menghan; Devlin, Joseph C; Hu, Jiyuan; Volkova, Angelina; Battaglia, Thomas W; Ho, Melody; Asplin, John R; Byrd, Allyson; Loke, P'ng; Li, Huilin; Ruggles, Kelly V; Tsirigos, Aristotelis; Blaser, Martin J; Nazzal, Lama
Over-accumulation of oxalate in humans may lead to nephrolithiasis and nephrocalcinosis. Humans lack endogenous oxalate degradation pathways (ODP), but intestinal microbes can degrade oxalate using multiple ODPs and protect against its absorption. The exact oxalate-degrading taxa in the human microbiota and their ODP have not been described. We leverage multi-omics data (>3000 samples from >1000 subjects) to show that the human microbiota primarily uses the type II ODP, rather than type I. Further, among the diverse ODP-encoding microbes, an oxalate autotroph, Oxalobacter formigenes, dominates this function transcriptionally. Patients with Inflammatory Bowel Disease (IBD) frequently suffer from disrupted oxalate homeostasis and calcium oxalate nephrolithiasis. We show that the enteric oxalate level is elevated in IBD patients, with highest levels in Crohn's disease patients with both ileal and colonic involvement consistent with known nephrolithiasis risk. We show that the microbiota ODP expression is reduced in IBD patients, which may contribute to the disrupted oxalate homeostasis. The specific changes in ODP expression by several important taxa suggest that they play distinct roles in IBD-induced nephrolithiasis risk. Lastly, we colonize mice that are maintained in the gnotobiotic facility with O. formigenes, using either a laboratory isolate or an isolate we cultured from human stools, and observed a significant reduction in host fecal and urine oxalate levels, supporting our in silico prediction of the importance of the microbiome, particularly O. formigenes in host oxalate homeostasis.
PMID: 33769280
ISSN: 2050-084x
CID: 4823012