Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:nagelk01

Total Results:

32


Motion vision: Pinning down motion computation in an ever-changing circuit

Nagel, Katherine
A new electrophysiological study of the Drosophila visual system, recording from columnar inputs to motion-detecting neurons, has provided new insights into the computations that underlie motion vision.
PMID: 34875241
ISSN: 1879-0445
CID: 5110192

Encoding and control of orientation to airflow by a set of Drosophila fan-shaped body neurons

Currier, Timothy A; Matheson, Andrew Mm; Nagel, Katherine I
The insect central complex (CX) is thought to underlie goal-oriented navigation but its functional organization is not fully understood. We recorded from genetically-identified CX cell types in Drosophila and presented directional visual, olfactory, and airflow cues known to elicit orienting behavior. We found that a group of neurons targeting the ventral fan-shaped body (ventral P-FNs) are robustly tuned for airflow direction. Ventral P-FNs did not generate a 'map' of airflow direction. Instead, cells in each hemisphere were tuned to 45° ipsilateral, forming a pair of orthogonal bases. Imaging experiments suggest that ventral P-FNs inherit their airflow tuning from neurons that provide input from the lateral accessory lobe (LAL) to the noduli (NO). Silencing ventral P-FNs prevented flies from selecting appropriate corrective turns following changes in airflow direction. Our results identify a group of CX neurons that robustly encode airflow direction and are required for proper orientation to this stimulus.
PMCID:7793622
PMID: 33377868
ISSN: 2050-084x
CID: 4771002

Experience- and Context-Dependent Modulation of the Invertebrate Compass System

Currier, Timothy A; Nagel, Katherine I
How are head direction signals computed and maintained in neural circuits? In this issue of Neuron, Shiozaki et al. (2020) expand our understanding of the fly "compass" network, revealing context- and experience-dependent changes in the multiplexed encoding of head direction and steering maneuvers.
PMID: 32272068
ISSN: 1097-4199
CID: 4379002

Multisensory control of navigation in the fruit fly

Currier, Timothy A; Nagel, Katherine I
Spatial navigation is influenced by cues from nearly every sensory modality and thus provides an excellent model for understanding how different sensory streams are integrated to drive behavior. Here we review recent work on multisensory control of navigation in the model organism Drosophila melanogaster, which allows for detailed circuit dissection. We identify four modes of integration that have been described in the literature-suppression, gating, summation, and association-and describe regions of the larval and adult brain that have been implicated in sensory integration. Finally we discuss what circuit architectures might support these different forms of integration. We argue that Drosophila is an excellent model to discover these circuit and biophysical motifs.
PMID: 31841944
ISSN: 1873-6882
CID: 4243492

Encoding of Wind Direction by Central Neurons in Drosophila

Suver, Marie P; Matheson, Andrew M M; Sarkar, Sinekdha; Damiata, Matthew; Schoppik, David; Nagel, Katherine I
Wind is a major navigational cue for insects, but how wind direction is decoded by central neurons in the insect brain is unknown. Here we find that walking flies combine signals from both antennae to orient to wind during olfactory search behavior. Movements of single antennae are ambiguous with respect to wind direction, but the difference between left and right antennal displacements yields a linear code for wind direction in azimuth. Second-order mechanosensory neurons share the ambiguous responses of a single antenna and receive input primarily from the ipsilateral antenna. Finally, we identify novel "wedge projection neurons" that integrate signals across the two antennae and receive input from at least three classes of second-order neurons to produce a more linear representation of wind direction. This study establishes how a feature of the sensory environment-wind direction-is decoded by neurons that compare information across two sensors.
PMID: 30948249
ISSN: 1097-4199
CID: 3900752

Olfactory navigation and the receptor nonlinearity

Victor, Jonathan D; Boie, Sebastian D; Connor, Erin G; Crimaldi, John P; Ermentrout, G Bard; Nagel, Katherine I
The demands on a sensory system depend not only on the statistics of its inputs but also on the task. In olfactory navigation, for example, the task is to find the plume source; allocation of sensory resources may therefore be driven by aspects of the plume that are informative about source location, rather than concentration per se. Here we explore the implications of this idea for encoding odor concentration.To formalize the notion that sensory resources are limited, we considered coding strategies that partitioned the odor concentration range into a set of discriminable intervals. We developed a dynamic programming algorithm that, given the distribution of odor concentrations at several locations, determines the partitioning that conveys the most information about location. We applied this analysis to planar laser-induced fluorescence measurements of spatiotemporal odor fields with realistic advection speeds (5 to 20 cm/sec), with or without a nearby boundary or obstacle. Across all environments, the optimal coding strategy allocated more resources (i.e., more and finer discriminable intervals) to the upper end of the concentration range than would be expected from histogram equalization, the optimal strategy if the goal were to reconstruct the plume, rather than to navigate. Finally, we show that ligand binding, as captured by the Hill equation, transforms odorant concentration into response levels in a way that approximates information maximization for navigation. This behavior occurs when the Hill dissociation constant is near the mean odor concentration, an adaptive set-point that has been observed in the olfactory system of flies.SIGNIFICANCE STATEMENTThe first step of olfactory processing is receptor binding, and the resulting relationship between odorant concentration and the bound receptor fraction is a saturating one. While this Hill nonlinearity can be viewed as a distortion that is imposed by the biophysics of receptor binding, here we show that it also plays an important information-processing role in olfactory navigation. Specifically, by combining a novel dynamic-programming algorithm with physical measurements of turbulent plumes, we determine the optimal strategy for encoding odor concentration when the goal is to determine location. This strategy is distinct from histogram equalization, the strategy that maximizes information about plume concentration, and is closely approximated by the Hill nonlinearity when the binding constant is near the ambient mean.
PMID: 30846614
ISSN: 1529-2401
CID: 3724172

Algorithms And Circuits For Olfactory Navigation In Drosophila [Meeting Abstract]

Nagel, Katherine
ISI:000493389500058
ISSN: 0379-864x
CID: 4221922

Multisensory Control of Orientation in Tethered Flying Drosophila

Currier, Timothy A; Nagel, Katherine I
A longstanding goal of systems neuroscience is to quantitatively describe how the brain integrates sensory cues over time. Here, we develop a closed-loop orienting paradigm in Drosophila to study the algorithms by which cues from two modalities are integrated during ongoing behavior. We find that flies exhibit two behaviors when presented simultaneously with an attractive visual stripe and aversive wind cue. First, flies perform a turn sequence where they initially turn away from the wind but later turn back toward the stripe, suggesting dynamic sensory processing. Second, turns toward the stripe are slowed by the presence of competing wind, suggesting summation of turning drives. We develop a model in which signals from each modality are filtered in space and time to generate turn commands and then summed to produce ongoing orienting behavior. This computational framework correctly predicts behavioral dynamics for a range of stimulus intensities and spatial arrangements.
PMID: 30393038
ISSN: 1879-0445
CID: 3480502

Algorithms for Olfactory Search across Species

Baker, Keeley L; Dickinson, Michael; Findley, Teresa M; Gire, David H; Louis, Matthieu; Suver, Marie P; Verhagen, Justus V; Nagel, Katherine I; Smear, Matthew C
Localizing the sources of stimuli is essential. Most organisms cannot eat, mate, or escape without knowing where the relevant stimuli originate. For many, if not most, animals, olfaction plays an essential role in search. While microorganismal chemotaxis is relatively well understood, in larger animals the algorithms and mechanisms of olfactory search remain mysterious. In this symposium, we will present recent advances in our understanding of olfactory search in flies and rodents. Despite their different sizes and behaviors, both species must solve similar problems, including meeting the challenges of turbulent airflow, sampling the environment to optimize olfactory information, and incorporating odor information into broader navigational systems.
PMID: 30381430
ISSN: 1529-2401
CID: 3400862

Elementary sensory-motor transformations underlying olfactory navigation in walking fruit-flies

Álvarez-Salvado, Efrén; Licata, Angela M; Connor, Erin G; McHugh, Margaret K; King, Benjamin Mn; Stavropoulos, Nicholas; Victor, Jonathan D; Crimaldi, John P; Nagel, Katherine I
Odor attraction in walking Drosophila melanogaster is commonly used to relate neural function to behavior, but the algorithms underlying attraction are unclear. Here, we develop a high-throughput assay to measure olfactory behavior in response to well-controlled sensory stimuli. We show that odor evokes two behaviors: an upwind run during odor (ON response), and a local search at odor offset (OFF response). Wind orientation requires antennal mechanoreceptors, but search is driven solely by odor. Using dynamic odor stimuli, we measure the dependence of these two behaviors on odor intensity and history. Based on these data, we develop a navigation model that recapitulates the behavior of flies in our apparatus, and generates realistic trajectories when run in a turbulent boundary layer plume. The ability to parse olfactory navigation into quantifiable elementary sensori-motor transformations provides a foundation for dissecting neural circuits that govern olfactory behavior.
PMCID:6103744
PMID: 30129438
ISSN: 2050-084x
CID: 3246092