Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:naiks06

Total Results:

66


Langerhans cells are essential components of the angiogenic niche during murine skin repair

Wasko, Renee; Bridges, Kate; Pannone, Rebecca; Sidhu, Ikjot; Xing, Yue; Naik, Shruti; Miller-Jensen, Kathryn; Horsley, Valerie
Angiogenesis, the growth of new blood vessels from pre-existing vessels, occurs during development, injury repair, and tumorigenesis to deliver oxygen, immune cells, and nutrients to tissues. Defects in angiogenesis occur in cardiovascular and inflammatory diseases, and chronic, non-healing wounds, yet treatment options are limited. Here, we provide a map of the early angiogenic niche by analyzing single-cell RNA sequencing of mouse skin wound healing. Our data implicate Langerhans cells (LCs), phagocytic, skin-resident immune cells, in driving angiogenesis during skin repair. Using lineage-driven reportersw, three-dimensional (3D) microscopy, and mouse genetics, we show that LCs are situated at the endothelial cell leading edge in mouse skin wounds and are necessary for angiogenesis during repair. These data provide additional future avenues for the control of angiogenesis to treat disease and chronic wounds and extend the function of LCs beyond their canonical role in antigen presentation and T cell immunity.
PMID: 36493773
ISSN: 1878-1551
CID: 5378862

Interleukin-17 governs hypoxic adaptation of injured epithelium

Konieczny, Piotr; Xing, Yue; Sidhu, Ikjot; Subudhi, Ipsita; Mansfield, Kody P; Hsieh, Brandon; Biancur, Douglas E; Larsen, Samantha B; Cammer, Michael; Li, Dongqing; Landén, Ning Xu; Loomis, Cynthia; Heguy, Adriana; Tikhonova, Anastasia N; Tsirigos, Aristotelis; Naik, Shruti
Mammalian cells autonomously activate hypoxia-inducible transcription factors (HIFs) to ensure survival in low-oxygen environments. We report here that injury-induced hypoxia is insufficient to trigger HIF1α in damaged epithelium. Instead, multimodal single-cell and spatial transcriptomics analyses and functional studies reveal that retinoic acid-related orphan receptor γt+ (RORγt+) γδ T cell-derived interleukin-17A (IL-17A) is necessary and sufficient to activate HIF1α. Protein kinase B (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling proximal of IL-17 receptor C (IL-17RC) activates mammalian target of rapamycin (mTOR) and consequently HIF1α. The IL-17A-HIF1α axis drives glycolysis in wound front epithelia. Epithelial-specific loss of IL-17RC, HIF1α, or blockade of glycolysis derails repair. Our findings underscore the coupling of inflammatory, metabolic, and migratory programs to expedite epithelial healing and illuminate the immune cell-derived inputs in cellular adaptation to hypoxic stress during repair.
PMID: 35709248
ISSN: 1095-9203
CID: 5268732

Inflammatory memory and tissue adaptation in sickness and in health

Naik, Shruti; Fuchs, Elaine
Our body has a remarkable ability to remember its past encounters with allergens, pathogens, wounds and irritants, and to react more quickly to the next experience. This accentuated sensitivity also helps us to cope with new threats. Despite maintaining a state of readiness and broadened resistance to subsequent pathogens, memories can also be maladaptive, leading to chronic inflammatory disorders and cancers. With the ever-increasing emergence of new pathogens, allergens and pollutants in our world, the urgency to unravel the molecular underpinnings of these phenomena has risen to new heights. Here we reflect on how the field of inflammatory memory has evolved, since 2007, when researchers realized that non-specific memory is contained in the nucleus and propagated at the epigenetic level. We review the flurry of recent discoveries revealing that memory is not just a privilege of the immune system but also extends to epithelia of the skin, lung, intestine and pancreas, and to neurons. Although still unfolding, epigenetic memories of inflammation have now been linked to possible brain disorders such as Alzheimer disease, and to an elevated risk of cancer. In this Review, we consider the consequences-good and bad-of these epigenetic memories and their implications for human health and disease.
PMCID:9302602
PMID: 35831602
ISSN: 1476-4687
CID: 5269292

Tracking transitional probabilities and segmenting auditory sequences are dissociable processes in adults and neonates

Benjamin, Lucas; Fló, Ana; Palu, Marie; Naik, Shruti; Melloni, Lucia; Dehaene-Lambertz, Ghislaine
Since speech is a continuous stream with no systematic boundaries between words, how do pre-verbal infants manage to discover words? A proposed solution is that they might use the transitional probability between adjacent syllables, which drops at word boundaries. Here, we tested the limits of this mechanism by increasing the size of the word-unit to four syllables, and its automaticity by testing asleep neonates. Using markers of statistical learning in neonates' EEG, compared to adult behavioral performances in the same task, we confirmed that statistical learning is automatic enough to be efficient even in sleeping neonates. We also revealed that: (1) Successfully tracking transition probabilities (TP) in a sequence is not sufficient to segment it. (2) Prosodic cues, as subtle as subliminal pauses, enable to recover words segmenting capacities. (3) Adults' and neonates' capacities to segment streams seem remarkably similar despite the difference of maturation and expertise. Finally, we observed that learning increased the overall similarity of neural responses across infants during exposure to the stream, providing a novel neural marker to monitor learning. Thus, from birth, infants are equipped with adult-like tools, allowing them to extract small coherent word-like units from auditory streams, based on the combination of statistical analyses and auditory parsing cues. RESEARCH HIGHLIGHTS: Successfully tracking transitional probabilities in a sequence is not always sufficient to segment it. Word segmentation solely based on transitional probability is limited to bi- or tri-syllabic elements. Prosodic cues, as subtle as subliminal pauses, enable to recover chunking capacities in sleeping neonates and awake adults for quadriplets.
PMID: 35772033
ISSN: 1467-7687
CID: 5281302

GRAPPA 2020 Research Award Recipients

Castillo, Rochelle L; Yan, Di; Ashhurst, Anneliese S; Elliott, Ashley; Angioni, Maria Maddalena; Scher, Jose U; Naik, Shruti; Neimann, Andrea; Byrne, Scott N; Payne, Richard J; FitzGerald, Oliver; Pennington, Stephen R; Cauli, Alberto; Chandran, Vinod
At the 2021 Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) annual meeting, a summary of the research conducted by the recipients of the 2020 GRAPPA Research Awards was presented by the awardees. The summary of the 4 presentations is provided here.
PMID: 35293338
ISSN: 0315-162x
CID: 5183902

Epithelial-immune crosstalk in health and disease

Rosenblum, Daniel; Naik, Shruti
Far from inert structures, our body's epithelial boundaries engage in a dynamic crosstalk with immune cells that is vital for immune surveillance and barrier function. Using the skin and gut epithelium, two structurally distinct but critical environmental interfaces, here we review the context-dependent interactions between myriad immune cells and epithelial subsets. We discuss immune communique reserved for epithelial progenitors and the enduring consequences for tissue fitness. Then, we delve into the cellular and molecular exchanges between differentiated epithelial subsets and adjacent immune cells. Therapeutically targeting stage-specific immune-epithelial interaction could boost regeneration and mitigate inflammatory pathologies.
PMID: 35461159
ISSN: 1879-0380
CID: 5218702

γδ T cells monitor tissue health

Subudhi, Ipsita; Naik, Shruti
PMID: 35165447
ISSN: 1529-2916
CID: 5163372

One Size Does Not Fit All: Diversifying Immune Function in the Skin

Naik, Shruti
Our body's most outward facing epithelial barrier, the skin, serves as the frontline defense against myriad environmental assailants. To combat these motley threats, the skin has evolved a sophisticated immunological arsenal. In this article, I provide an overview of the skin's complex architecture and the distinct microniches in which immune cells reside and function. I review burgeoning literature on the synchronized immune, stromal, epithelial, and neuronal cell responses in healthy and inflamed skin. Next, I delve into the distinct requirement and mechanisms of long-term immune surveillance and tissue adaptation at the cutaneous frontier. Finally, by discussing the contributions of immune cells in maintaining and restoring tissue integrity, I underscore the constellation of noncanonical functions undertaken by the skin immune system. Just as our skin's immune system benefits from embracing diverse defense strategies, so, too, must we in the immunology research community support disparate perspectives and people from all walks of life.
PMID: 35017212
ISSN: 1550-6606
CID: 5118622

Spatial Transcriptomics Stratifies Health and Psoriatic Disease Severity by Emergent Cellular Ecosystems [Meeting Abstract]

Castillo, Rochelle; Sidhu, Ikjot; Dolgalev, Igor; Subudhi, Ipsita; Yan, Di; Konieczny, Piotr; Hsieh, Brandon; Chu, Tinyi; Haberman, Rebecca; Selvaraj, Shanmugapriya; Shiomi, Tomoe; Medina, Rhina; Girija, Parvathy Vasudevanpillai; Heguy, Adriana; Loomis, Cynthia; Chiriboga, Luis; Meehan, Shane; Ritchlin, Christopher; Garcia-Hernandez, Maria de la Luz; Carucci, John; Neimann, Andrea; Naik, Shruti; Scher, Jose
ISI:000877386502162
ISSN: 2326-5191
CID: 5525672

Fanning the Flames: IRAK2 Signaling in Differentiated Epithelium Potentiates Skin Inflammation [Comment]

Castillo, Rochelle; Subudhi, Ipsita; Naik, Shruti
Aberrant epidermal differentiation is a hallmark of inflammatory skin diseases, including psoriasis and atopic dermatitis. If and how differentiated epidermal cells contribute to inflammatory pathology is unclear. In their new article in the Journal of Investigative Dermatology, Shao et al. (2021) report that IRAK2 signaling downstream of IL-1 and IL-36 links epidermal differentiation and skin inflammation.
PMID: 34560916
ISSN: 1523-1747
CID: 5063102