Searched for: in-biosketch:yes
person:novikd01
Measuring water exchange on a preclinical MRI system using filter exchange and diffusion time dependent kurtosis imaging
Li, Chenyang; Fieremans, Els; Novikov, Dmitry S; Ge, Yulin; Zhang, Jiangyang
PURPOSE/OBJECTIVE:Filter exchange imaging (FEXI) and diffusion time (t)-dependent diffusion kurtosis imaging (DKI(t)) are both sensitive to water exchange between tissue compartments. The restrictive effects of tissue microstructure, however, introduce bias to the exchange rate obtained by these two methods, as their interpretation conventionally rely on the Kärger model of barrier limited exchange between Gaussian compartments. Here, we investigated whether FEXI and DKI(t) can provide comparable exchange rates in ex vivo mouse brains. THEORY AND METHODS/METHODS:FEXI and DKI(t) data were acquired from ex vivo mouse brains on a preclinical MRI system. Phase cycling and negative slice prewinder gradients were used to minimize the interferences from imaging gradients. RESULTS:) from DKI(t) along the radial direction. In comparison, discrepancies between FEXI and DKI(t) were found in the cortex due to low filter efficiency and confounding effects from tissue microstructure. CONCLUSION/CONCLUSIONS:The results suggest that FEXI and DKI(t) are sensitive to the same exchange processes in white matter when separated from restrictive effects of microstructure. The complex microstructure in gray matter, with potential exchange among multiple compartments and confounding effects of microstructure, still pose a challenge for FEXI and DKI(t).
PMID: 36404493
ISSN: 1522-2594
CID: 5383932
Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems
Coelho, Santiago; Baete, Steven H; Lemberskiy, Gregory; Ades-Aaron, Benjamin; Barrol, Genevieve; Veraart, Jelle; Novikov, Dmitry S; Fieremans, Els
Estimating intra- and extra-axonal microstructure parameters, such as volume fractions and diffusivities, has been one of the major efforts in brain microstructure imaging with MRI. The Standard Model (SM) of diffusion in white matter has unified various modeling approaches based on impermeable narrow cylinders embedded in locally anisotropic extra-axonal space. However, estimating the SM parameters from a set of conventional diffusion MRI (dMRI) measurements is ill-conditioned. Multidimensional dMRI helps resolve the estimation degeneracies, but there remains a need for clinically feasible acquisitions that yield robust parameter maps. Here we find optimal multidimensional protocols by minimizing the mean-squared error of machine learning-based SM parameter estimates for two 3T scanners with corresponding gradient strengths of 40 and 80mT/m. We assess intra-scanner and inter-scanner repeatability for 15-minute optimal protocols by scanning 20 healthy volunteers twice on both scanners. The coefficients of variation all SM parameters except free water fraction are ≲10% voxelwise and 1-4% for their region-averaged values. As the achieved SM reproducibility outcomes are similar to those of conventional diffusion tensor imaging, our results enable robust in vivo mapping of white matter microstructure in neuroscience research and in the clinic.
PMID: 35545197
ISSN: 1095-9572
CID: 5214502
Neurite Exchange Imaging ((NEXI): A minimal model of diffusion in gray matter with inter-compartment water exchange
Jelescu, Ileana O; de Skowronski, Alexandre; Geffroy, Françoise; Palombo, Marco; Novikov, Dmitry S
Biophysical models of diffusion in white matter have been center-stage over the past two decades and are essentially based on what is now commonly referred to as the "Standard Model" (SM) of non-exchanging anisotropic compartments with Gaussian diffusion. In this work, we focus on diffusion MRI in gray matter, which requires rethinking basic microstructure modeling blocks. In particular, at least three contributions beyond the SM need to be considered for gray matter: water exchange across the cell membrane - between neurites and the extracellular space; non-Gaussian diffusion along neuronal and glial processes - resulting from structural disorder; and signal contribution from soma. For the first contribution, we propose Neurite Exchange Imaging (NEXI) as an extension of the SM of diffusion, which builds on the anisotropic Kärger model of two exchanging compartments. Using datasets acquired at multiple diffusion weightings (b) and diffusion times (t) in the rat brain in vivo, we investigate the suitability of NEXI to describe the diffusion signal in the gray matter, compared to the other two possible contributions. Our results for the diffusion time window 20-45 ms show minimal diffusivity time-dependence and more pronounced kurtosis decay with time, which is well fit by the exchange model. Moreover, we observe lower signal for longer diffusion times at high b. In light of these observations, we identify exchange as the mechanism that best explains these signal signatures in both low-b and high-b regime, and thereby propose NEXI as the minimal model for gray matter microstructure mapping. We finally highlight multi-b multi-t acquisition protocols as being best suited to estimate NEXI model parameters reliably. Using this approach, we estimate the inter-compartment water exchange time to be 15 - 60 ms in the rat cortex and hippocampus in vivo, which is of the same order or shorter than the diffusion time in typical diffusion MRI acquisitions. This suggests water exchange as an essential component for interpreting diffusion MRI measurements in gray matter.
PMID: 35523369
ISSN: 1095-9572
CID: 5216522
Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI
Lee, Hong-Hsi; Novikov, Dmitry S; Fieremans, Els
PURPOSE/OBJECTIVE:To investigate and remove Gibbs-ringing artifacts caused by partial Fourier (PF) acquisition and zero filling interpolation in MRI data. THEORY AND METHODS/UNASSIGNED:Gibbs ringing of fully sampled data, leading to oscillations around tissue boundaries, is caused by the symmetric truncation of k-space. Such ringing can be removed by conventional methods, with the local subvoxel shifts method being the state-of-the-art. However, the asymmetric truncation of k-space in routinely used PF acquisitions leads to additional ringings of wider intervals in the PF sampling dimension that cannot be corrected solely based on magnitude images reconstructed via zero filling. Here, we develop a pipeline for the Removal of PF-induced Gibbs ringing (RPG) to remove ringing patterns of different periods by applying the conventional method twice. The proposed pipeline is validated on numerical phantoms, demonstrated on in vivo diffusion MRI measurements, and compared with the conventional method and neural network-based approach. RESULTS:For PF = 7/8 and 6/8, Gibbs-ringings and subsequent bias in diffusion metrics induced by PF acquisition and zero filling are robustly removed by using the proposed RPG pipeline. For PF = 5/8, however, ringing removal via RPG leads to excessive image blurring due to the interplay of image phase and convolution kernel. CONCLUSIONS:RPG corrects Gibbs-ringing artifacts in magnitude images of PF acquired data and reduces the bias in quantitative MR metrics. Considering the benefit of PF acquisition and the feasibility of ringing removal, we suggest applying PF = 6/8 when PF acquisition is necessary.
PMID: 34227142
ISSN: 1522-2594
CID: 4932162
Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome
Huang, Susie Y; Witzel, Thomas; Keil, Boris; Scholz, Alina; Davids, Mathias; Dietz, Peter; Rummert, Elmar; Ramb, Rebecca; Kirsch, John E; Yendiki, Anastasia; Fan, Qiuyun; Tian, Qiyuan; Ramos-Llordén, Gabriel; Lee, Hong-Hsi; Nummenmaa, Aapo; Bilgic, Berkin; Setsompop, Kawin; Wang, Fuyixue; Avram, Alexandru V; Komlosh, Michal; Benjamini, Dan; Magdoom, Kulam Najmudeen; Pathak, Sudhir; Schneider, Walter; Novikov, Dmitry S; Fieremans, Els; Tounekti, Slimane; Mekkaoui, Choukri; Augustinack, Jean; Berger, Daniel; Shapson-Coe, Alexander; Lichtman, Jeff; Basser, Peter J; Wald, Lawrence L; Rosen, Bruce R
The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain - from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.
PMID: 34464739
ISSN: 1095-9572
CID: 4998402
Nanostructure-specific X-ray tomography reveals myelin levels, integrity and axon orientations in mouse and human nervous tissue
Georgiadis, Marios; Schroeter, Aileen; Gao, Zirui; Guizar-Sicairos, Manuel; Liebi, Marianne; Leuze, Christoph; McNab, Jennifer A; Balolia, Aleezah; Veraart, Jelle; Ades-Aron, Benjamin; Kim, Sunglyoung; Shepherd, Timothy; Lee, Choong H; Walczak, Piotr; Chodankar, Shirish; DiGiacomo, Phillip; David, Gergely; Augath, Mark; Zerbi, Valerio; Sommer, Stefan; Rajkovic, Ivan; Weiss, Thomas; Bunk, Oliver; Yang, Lin; Zhang, Jiangyang; Novikov, Dmitry S; Zeineh, Michael; Fieremans, Els; Rudin, Markus
Myelin insulates neuronal axons and enables fast signal transmission, constituting a key component of brain development, aging and disease. Yet, myelin-specific imaging of macroscopic samples remains a challenge. Here, we exploit myelin's nanostructural periodicity, and use small-angle X-ray scattering tensor tomography (SAXS-TT) to simultaneously quantify myelin levels, nanostructural integrity and axon orientations in nervous tissue. Proof-of-principle is demonstrated in whole mouse brain, mouse spinal cord and human white and gray matter samples. Outcomes are validated by 2D/3D histology and compared to MRI measurements sensitive to myelin and axon orientations. Specificity to nanostructure is exemplified by concomitantly imaging different myelin types with distinct periodicities. Finally, we illustrate the method's sensitivity towards myelin-related diseases by quantifying myelin alterations in dysmyelinated mouse brain. This non-destructive, stain-free molecular imaging approach enables quantitative studies of myelination within and across samples during development, aging, disease and treatment, and is applicable to other ordered biomolecules or nanostructures.
PMID: 34011929
ISSN: 2041-1723
CID: 4877382
Assessment of myofiber microstructure changes due to atrophy and recovery with time-dependent diffusion MRI
Lemberskiy, Gregory; Feiweier, Thorsten; Gyftopoulos, Soterios; Axel, Leon; Novikov, Dmitry S; Fieremans, Els
Current clinical MRI evaluation of musculature largely focuses on nonquantitative assessments (including T1-, T2- and PD-weighted images), which may vary greatly between imaging systems and readers. This work aims to determine the efficacy of a quantitative approach to study the microstructure of muscles at the cellular level with the random permeable barrier model (RPBM) applied to time-dependent diffusion tensor imaging (DTI) for varying diffusion time. Patients (N = 15, eight males and seven females) with atrophied calf muscles due to immobilization of one leg in a nonweight-bearing cast, were enrolled after providing informed consent. Their calf muscles were imaged with stimulated echo diffusion for DTI, T1-mapping and RPBM modeling. Specifically, After cast removal, both calf muscles (atrophied and contralateral control leg) were imaged with MRI for all patients, with follow-up scans to monitor recovery of the atrophied leg for six patients after 4 and 8 weeks. We compare RPBM-derived microstructural metrics: myofiber diameter, a, and sarcolemma permeability, κ, along with macroscopic anatomical parameters (muscle cross-sectional area, fiber orientation, <θ>, and T1 relaxation). ROC analysis was used to compare parameters between control and atrophied muscle, while the Friedman test was used to evaluate the atrophied muscle longitudinally. We found that the RPBM framework enables measurement of microstructural parameters from diffusion time-dependent DTI, of which the myofiber diameter is a stronger predictor of intramuscular morphological changes than either macroscopic (anatomical) measurements or empirical diffusion parameters. This work demonstrates the potential of RPBM to assess pathological changes in musculature that seem undetectable with standard diffusion and anatomical MRI.
PMID: 34002901
ISSN: 1099-1492
CID: 4876922
Measurement of cellular-interstitial water exchange time in tumors based on diffusion-time-dependent diffusional kurtosis imaging
Zhang, Jin; Lemberskiy, Gregory; Moy, Linda; Fieremans, Els; Novikov, Dmitry S; Kim, Sungheon Gene
PURPOSE/OBJECTIVE:) in tumors, both in animals and in humans. METHODS:) by adjusting the diffusion gradient strength. The tDKI data at each diffusion time t were used for a weighted linear least-squares fit method to estimate the diffusion-time-dependent diffusivity, D(t), and diffusional kurtosis, K(t). RESULTS:median and IQR of the two breast cancers were 70 (94) and 106 (92) ms. CONCLUSION/CONCLUSIONS:The results of this proof-of-concept study substantiate the feasibility of using tDKI to measure cellular-interstitial water exchange time without using an exogenous contrast agent.
PMID: 33634508
ISSN: 1099-1492
CID: 4795052
Training a neural network for Gibbs and noise removal in diffusion MRI
Muckley, Matthew J; Ades-Aron, Benjamin; Papaioannou, Antonios; Lemberskiy, Gregory; Solomon, Eddy; Lui, Yvonne W; Sodickson, Daniel K; Fieremans, Els; Novikov, Dmitry S; Knoll, Florian
PURPOSE/OBJECTIVE:To develop and evaluate a neural network-based method for Gibbs artifact and noise removal. METHODS:A convolutional neural network (CNN) was designed for artifact removal in diffusion-weighted imaging data. Two implementations were considered: one for magnitude images and one for complex images. Both models were based on the same encoder-decoder structure and were trained by simulating MRI acquisitions on synthetic non-MRI images. RESULTS:Both machine learning methods were able to mitigate artifacts in diffusion-weighted images and diffusion parameter maps. The CNN for complex images was also able to reduce artifacts in partial Fourier acquisitions. CONCLUSIONS:The proposed CNNs extend the ability of artifact correction in diffusion MRI. The machine learning method described here can be applied on each imaging slice independently, allowing it to be used flexibly in clinical applications.
PMID: 32662910
ISSN: 1522-2594
CID: 4528102
Improved Task-based Functional MRI Language Mapping in Patients with Brain Tumors through Marchenko-Pastur Principal Component Analysis Denoising
Ades-Aron, Benjamin; Lemberskiy, Gregory; Veraart, Jelle; Golfinos, John; Fieremans, Els; Novikov, Dmitry S; Shepherd, Timothy
Background Functional MRI improves preoperative planning in patients with brain tumors, but task-correlated signal intensity changes are only 2%-3% above baseline. This makes accurate functional mapping challenging. Marchenko-Pastur principal component analysis (MP-PCA) provides a novel strategy to separate functional MRI signal from noise without requiring user input or prior data representation. Purpose To determine whether MP-PCA denoising improves activation magnitude for task-based functional MRI language mapping in patients with brain tumors. Materials and Methods In this Health Insurance Portability and Accountability Act-compliant study, MP-PCA performance was first evaluated by using simulated functional MRI data with a known ground truth. Right-handed, left-language-dominant patients with brain tumors who successfully performed verb generation, sentence completion, and finger tapping functional MRI tasks were retrospectively identified between January 2017 and August 2018. On the group level, for each task, histograms of z scores for original and MP-PCA denoised data were extracted from relevant regions and contralateral homologs were seeded by a neuroradiologist blinded to functional MRI findings. Z scores were compared with paired two-sided t tests, and distributions were compared with effect size measurements and the Kolmogorov-Smirnov test. The number of voxels with a z score greater than 3 was used to measure task sensitivity relative to task duration. Results Twenty-three patients (mean age ± standard deviation, 43 years ± 18; 13 women) were evaluated. MP-PCA denoising led to a higher median z score of task-based functional MRI voxel activation in left hemisphere cortical regions for verb generation (from 3.8 ± 1.0 to 4.5 ± 1.4; P < .001), sentence completion (from 3.7 ± 1.0 to 4.3 ± 1.4; P < .001), and finger tapping (from 6.9 ± 2.4 to 7.9 ± 2.9; P < .001). Median z scores did not improve in contralateral homolog regions for verb generation (from -2.7 ± 0.54 to -2.5 ± 0.40; P = .90), sentence completion (from -2.3 ± 0.21 to -2.4 ± 0.37; P = .39), or finger tapping (from -2.3 ± 1.20 to -2.7 ± 1.40; P = .07). Individual functional MRI task durations could be truncated by at least 40% after MP-PCA without degradation of clinically relevant correlations between functional cortex and functional MRI tasks. Conclusion Denoising with Marchenko-Pastur principal component analysis led to higher task correlations in relevant cortical regions during functional MRI language mapping in patients with brain tumors. © RSNA, 2020 Online supplemental material is available for this article.
PMID: 33289611
ISSN: 1527-1315
CID: 4708782