Searched for: in-biosketch:yes
person:nowosc01
Myosin IIa Promotes Antibody Responses by Regulating B Cell Activation, Acquisition of Antigen, and Proliferation
Hoogeboom, Robbert; Natkanski, Elizabeth M; Nowosad, Carla R; Malinova, Dessislava; Menon, Rajesh P; Casal, Antonio; Tolar, Pavel
B cell responses are regulated by antigen acquisition, processing, and presentation to helper TÂ cells. These functions are thought to depend on contractile activity of non-muscle myosin IIa. Here, we show that B cell-specific deletion of the myosin IIa heavy chain reduced the numbers of bone marrow B cell precursors and splenic marginal zone, peritoneal B1b, and germinal center B cells. In addition, myosin IIa-deficient follicular B cells acquired an activated phenotype and were less efficient in chemokinesis and extraction of membrane-presented antigens. Moreover, myosin IIa was indispensable for cytokinesis. Consequently, mice with myosin IIa-deficient B cells harbored reduced serum immunoglobulin levels and did not mount robust antibody responses when immunized. Altogether, these data indicate that myosin IIa is a negative regulator of B cell activation but a positive regulator of antigen acquisition from antigen-presenting cells and that myosin IIa is essential for B cell development, proliferation, and antibody responses.
PMCID:5986709
PMID: 29791846
ISSN: 2211-1247
CID: 4947282
Plasma Membrane Sheets for Studies of B Cell Antigen Internalization from Immune Synapses
Nowosad, Carla R; Tolar, Pavel
Surrogate planar and membrane systems have been employed to study the architecture of immune synapses; however, they often do not recapitulate trans-synaptic extraction and endocytosis of ligands by the immune cells. Transendocytosis (or trogocytosis) of antigen from immune synapses is particularly critical for antigen processing and presentation by B cells. Here we describe a protocol for preparation of plasma membrane sheets (PMSs), which are flexible and fluid membrane substrates that support robust B cell antigen extraction. We show how to attach B cell antigens to the PMSs and how to investigate antigen extraction and endocytosis by fluorescent microscopy and computational image analysis. These techniques should be broadly applicable to studies of transendocytosis in a variety of cellular systems.
PMID: 28255697
ISSN: 1940-6029
CID: 4947272
Germinal center B cells recognize antigen through a specialized immune synapse architecture
Nowosad, Carla R; Spillane, Katelyn M; Tolar, Pavel
B cell activation is regulated by B cell antigen receptor (BCR) signaling and antigen internalization in immune synapses. Using large-scale imaging across B cell subsets, we found that, in contrast with naive and memory B cells, which gathered antigen toward the synapse center before internalization, germinal center (GC) B cells extracted antigen by a distinct pathway using small peripheral clusters. Both naive and GC B cell synapses required proximal BCR signaling, but GC cells signaled less through the protein kinase C-β-NF-κB pathway and produced stronger tugging forces on the BCR, thereby more stringently regulating antigen binding. Consequently, GC B cells extracted antigen with better affinity discrimination than naive B cells, suggesting that specialized biomechanical patterns in B cell synapses regulate T cell-dependent selection of high-affinity B cells in GCs.
PMCID:4943528
PMID: 27183103
ISSN: 1529-2916
CID: 4947262
WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts
Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R; Armer, Hannah; Munro, Peter M G; Blundell, Michael P; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J
The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability.
PMCID:5404712
PMID: 26590149
ISSN: 1938-3673
CID: 4947252
The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method
Clargo, Alison M; Hudson, Ashley R; Ndlovu, Welcome; Wootton, Rebecca J; Cremin, Louise A; O'Dowd, Victoria L; Nowosad, Carla R; Starkie, Dale O; Shaw, Sophie P; Compson, Joanne E; White, Dominic P; MacKenzie, Brendon; Snowden, James R; Newnham, Laura E; Wright, Michael; Stephens, Paul E; Griffiths, Meryn R; Lawson, Alastair D G; Lightwood, Daniel J
Single B cell technologies, which avoid traditional hybridoma fusion and combinatorial display, provide a means to interrogate the naturally-selected antibody repertoire of immunized animals. Many methods enable the sampling of memory B cell subsets, but few allow for the direct interrogation of the plasma cell repertoire, i.e., the subset of B cells responsible for producing immunoglobulin in serum. Here, we describe the use of a robust and simple fluorescence-based technique, called the fluorescent foci method, for the identification and isolation of antigen-specific IgG-secreting cells, such as plasma cells, from heterogeneous bone marrow preparations. Following micromanipulation of single cells, cognate pairs of heavy and light chain variable region genes were recovered by reverse transcription (RT)-polymerase chain reaction (PCR). During the PCR, variable regions were combined with a promoter fragment and a relevant constant region fragment to produce two separate transcriptionally-active PCR (TAP) fragments that were directly co-transfected into a HEK-293F cell line for recombinant antibody expression. The technique was successfully applied to the generation of a diverse panel of high-affinity, functional recombinant antibodies to human tumor necrosis factor (TNF) receptor 2 and TNF derived from the bone marrow of immunized rabbits and rats, respectively. Progression from a bone marrow sample to a panel of functional recombinant antibodies was possible within a 2-week timeframe.
PMCID:3929438
PMID: 24423622
ISSN: 1942-0870
CID: 4947242