Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:oconnm13

Total Results:

23


The Thalamocortical Circuit of Auditory Mismatch Negativity

Lakatos, Peter; O'Connell, Monica N; Barczak, Annamaria; McGinnis, Tammy; Neymotin, Samuel; Schroeder, Charles E; Smiley, John F; Javitt, Daniel C
BACKGROUND:Mismatch negativity (MMN) is an extensively validated biomarker of cognitive function across both normative and clinical populations and has previously been localized to supratemporal auditory cortex. MMN is thought to represent a comparison of the features of the present stimulus versus a mnemonic template formed by the prior stimuli. METHODS:We used concurrent thalamic and primary auditory cortical (A1) laminar recordings in 7 macaques to evaluate the relative contributions of core (lemniscal) and matrix (nonlemniscal) thalamic afferents to MMN generation. RESULTS:We demonstrated that deviance-related activity is observed mainly in matrix regions of auditory thalamus, MMN generators are most prominent in layer 1 of cortex as opposed to sensory responses that activate layer 4 first and sequentially all cortical layers, and MMN is elicited independent of the frequency tuning of A1 neuronal ensembles. Consistent with prior reports, MMN-related thalamocortical activity was strongly inhibited by ketamine. CONCLUSIONS:Taken together, our results demonstrate distinct matrix versus core thalamocortical circuitry underlying the generation of a higher-order brain response (MMN) versus sensory responses.
PMID: 31924325
ISSN: 1873-2402
CID: 4257792

Top-down, contextual entrainment of neuronal oscillations in the auditory thalamocortical circuit

Barczak, Annamaria; O'Connell, Monica Noelle; McGinnis, Tammy; Ross, Deborah; Mowery, Todd; Falchier, Arnaud; Lakatos, Peter
Prior studies have shown that repetitive presentation of acoustic stimuli results in an alignment of ongoing neuronal oscillations to the sequence rhythm via oscillatory entrainment by external cues. Our study aimed to explore the neural correlates of the perceptual parsing and grouping of complex repeating auditory patterns that occur based solely on statistical regularities, or context. Human psychophysical studies suggest that the recognition of novel auditory patterns amid a continuous auditory stimulus sequence occurs automatically halfway through the first repetition. We hypothesized that once repeating patterns were detected by the brain, internal rhythms would become entrained, demarcating the temporal structure of these repetitions despite lacking external cues defining pattern on- or offsets. To examine the neural correlates of pattern perception, neuroelectric activity of primary auditory cortex (A1) and thalamic nuclei was recorded while nonhuman primates passively listened to streams of rapidly presented pure tones and bandpass noise bursts. At arbitrary intervals, random acoustic patterns composed of 11 stimuli were repeated five times without any perturbance of the constant stimulus flow. We found significant delta entrainment by these patterns in the A1, medial geniculate body, and medial pulvinar. In A1 and pulvinar, we observed a statistically significant, pattern structure-aligned modulation of neuronal firing that occurred earliest in the pulvinar, supporting the idea that grouping and detecting complex auditory patterns is a top-down, context-driven process. Besides electrophysiological measures, a pattern-related modulation of pupil diameter verified that, like humans, nonhuman primates consciously detect complex repetitive patterns that lack physical boundaries.
PMCID:6094129
PMID: 30037997
ISSN: 1091-6490
CID: 3216342

Global dynamics of selective attention and its lapses in primary auditory cortex

Lakatos, Peter; Barczak, Annamaria; Neymotin, Samuel A; McGinnis, Tammy; Ross, Deborah; Javitt, Daniel C; O'Connell, Monica Noelle
Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures, we observed that besides the lack of entrainment by external stimuli, attentional lapses were also characterized by high-amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single-unit operations. Entrainment and alpha-oscillation-dominated periods were strongly anticorrelated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.
PMCID:5127770
PMID: 27618311
ISSN: 1546-1726
CID: 2246872

Pondering the Pulvinar

Lakatos, Peter; O'Connell, Monica N; Barczak, Annamaria
While the function of the pulvinar remains one of the least explored among the thalamic nuclei despite occupying the most thalamic volume in primates, it has long been suspected to play a crucial role in attentive stimulus processing. In this issue of Neuron, Zhou et al. (2016) use simultaneous pulvinar-visual cortex recordings and pulvinar inactivation to provide evidence that the pulvinar is essential for intact stimulus processing, maintenance of neuronal oscillatory dynamics, and mediating the effects of attention.
PMCID:5371725
PMID: 26748085
ISSN: 1097-4199
CID: 1901262

Crossmodal auditory stream selection via oscillatory entrainment in a virtual cocktail party [Meeting Abstract]

Lakatos, Peter; Barczak, Annamaria; O\Connell, Monica N.
ISI:000382408700034
ISSN: 0167-8760
CID: 5372582

Multi-Scale Entrainment of Coupled Neuronal Oscillations in Primary Auditory Cortex

O'Connell, M N; Barczak, A; Ross, D; McGinnis, T; Schroeder, C E; Lakatos, P
Earlier studies demonstrate that when the frequency of rhythmic tone sequences or streams is task relevant, ongoing excitability fluctuations (oscillations) of neuronal ensembles in primary auditory cortex (A1) entrain to stimulation in a frequency dependent way that sharpens frequency tuning. The phase distribution across A1 neuronal ensembles at time points when attended stimuli are predicted to occur reflects the focus of attention along the spectral attribute of auditory stimuli. This study examined how neuronal activity is modulated if only the temporal features of rhythmic stimulus streams are relevant. We presented macaques with auditory clicks arranged in 33 Hz (gamma timescale) quintets, repeated at a 1.6 Hz (delta timescale) rate. Such multi-scale, hierarchically organized temporal structure is characteristic of vocalizations and other natural stimuli. Monkeys were required to detect and respond to deviations in the temporal pattern of gamma quintets. As expected, engagement in the auditory task resulted in the multi-scale entrainment of delta- and gamma-band neuronal oscillations across all of A1. Surprisingly, however, the phase-alignment, and thus, the physiological impact of entrainment differed across the tonotopic map in A1. In the region of 11-16 kHz representation, entrainment most often aligned high excitability oscillatory phases with task-relevant events in the input stream and thus resulted in response enhancement. In the remainder of the A1 sites, entrainment generally resulted in response suppression. Our data indicate that the suppressive effects were due to low excitability phase delta oscillatory entrainment and the phase amplitude coupling of delta and gamma oscillations. Regardless of the phase or frequency, entrainment appeared stronger in left A1, indicative of the hemispheric lateralization of auditory function.
PMCID:4673342
PMID: 26696866
ISSN: 1662-5161
CID: 1883982

Layer specific sharpening of frequency tuning by selective attention in primary auditory cortex

O'Connell, Monica Noelle; Barczak, Annamaria; Schroeder, Charles E; Lakatos, Peter
Recent electrophysiological and neuroimaging studies provide converging evidence that attending to sounds increases the response selectivity of neuronal ensembles even at the first cortical stage of auditory stimulus processing in primary auditory cortex (A1). This is achieved by enhancement of responses in the regions that process attended frequency content, and by suppression of responses in the surrounding regions. The goals of our study were to define the extent to which A1 neuronal ensembles are involved in this process, determine its effect on the frequency tuning of A1 neuronal ensembles, and examine the involvement of the different cortical layers. To accomplish these, we analyzed laminar profiles of synaptic activity and action potentials recorded in A1 of macaques performing a rhythmic intermodal selective attention task. We found that the frequency tuning of neuronal ensembles was sharpened due to both increased gain at the preferentially processed or best frequency and increased response suppression at all other frequencies when auditory stimuli were attended. Our results suggest that these effects are due to a frequency-specific counterphase entrainment of ongoing delta oscillations, which predictively orchestrates opposite sign excitability changes across all of A1. This results in a net suppressive effect due to the large proportion of neuronal ensembles that do not specifically process the attended frequency content. Furthermore, analysis of laminar activation profiles revealed that although attention-related suppressive effects predominate the responses of supragranular neuronal ensembles, response enhancement is dominant in the granular and infragranular layers, providing evidence for layer-specific cortical operations in attentive stimulus processing.
PMCID:4252556
PMID: 25471586
ISSN: 0270-6474
CID: 1369392

Dual mechanism of neuronal ensemble inhibition in primary auditory cortex

O'Connell, Monica N; Falchier, Arnaud; McGinnis, Tammy; Schroeder, Charles E; Lakatos, Peter
Inhibition plays an essential role in shaping and refining the brain's representation of sensory stimulus attributes. In primary auditory cortex (A1), so-called "sideband" inhibition helps to sharpen the tuning of local neuronal responses. Several distinct types of anatomical circuitry could underlie sideband inhibition, including direct thalamocortical (TC) afferents, as well as indirect intracortical mechanisms. The goal of the present study was to characterize sideband inhibition in A1 and to determine its mechanism by analyzing laminar profiles of neuronal ensemble activity. Our results indicate that both lemniscal and nonlemniscal TC afferents play a role in inhibitory responses via feedforward inhibition and oscillatory phase reset, respectively. We propose that the dynamic modulation of excitability in A1 due to the phase reset of ongoing oscillations may alter the tuning of local neuronal ensembles and can be regarded as a flexible overlay on the more obligatory system of lemniscal feedforward type responses.
PMCID:3052772
PMID: 21338888
ISSN: 0896-6273
CID: 757102

Interactions within the hand representation in primary somatosensory cortex of primates

Lipton, Michael L; Liszewski, Mark C; O'Connell, M Noelle; Mills, Aimee; Smiley, John F; Branch, Craig A; Isler, Joseph R; Schroeder, Charles E
Previous studies indicate that primary somatosensory cortical area 3b in macaques contains a somatotopic map of the hand, encompassing representations of each digit. However, numerous observations including recent findings in anesthetized New World monkeys indicate that that the digit representations within the map are not discrete. We assessed the generality and spatial extent of these effects in awake macaques. We show that, within a given digit representation, (1) there is response to stimulation of all other digits tested, extending across most or all of the digit map, and (2) response to stimulation of the locally preferred digit is modulated by concurrent stimulation of each of the other digits. Control experiments rule out effects of attention and mechanical spread of stimulation. We thus confirm that, even at the first level of somatosensory cortical processing, inputs from potentially all of the digits frame the context within which the input to a single digit is represented.
PMCID:3073563
PMID: 21106828
ISSN: 0270-6474
CID: 388702

The leading sense: supramodal control of neurophysiological context by attention

Lakatos, Peter; O'Connell, Monica N; Barczak, Annamaria; Mills, Aimee; Javitt, Daniel C; Schroeder, Charles E
Attending to a stimulus enhances its neuronal representation, even at the level of primary sensory cortex. Cross-modal modulation can similarly enhance a neuronal representation, and this process can also operate at the primary cortical level. Phase reset of ongoing neuronal oscillatory activity has been shown to be an important element of the underlying modulation of local cortical excitability in both cases. We investigated the influence of attention on oscillatory phase reset in primary auditory and visual cortices of macaques performing an intermodal selective attention task. In addition to responses 'driven' by preferred modality stimuli, we noted that both preferred and nonpreferred modality stimuli could 'modulate' local cortical excitability by phase reset of ongoing oscillatory activity, and that this effect was linked to their being attended. These findings outline a supramodal mechanism by which attention can control neurophysiological context, thus determining the representation of specific sensory content in primary sensory cortex
PMCID:2909660
PMID: 19914189
ISSN: 1097-4199
CID: 150707