Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:parkh15

Total Results:

19


Advancing scalability and impacts of a teacher training program for promoting child mental health in Ugandan primary schools: protocol for a hybrid-type II effectiveness-implementation cluster randomized trial

Huang, Keng-Yen; Nakigudde, Janet; Kisakye, Elizabeth Nsamba; Sentongo, Hafsa; Dennis-Tiwary, Tracy A; Tozan, Yesim; Park, Hyung; Brotman, Laurie Miller
BACKGROUND:Children in low-and-middle-income countries (LMICs) are facing tremendous mental health challenges. Numerous evidence-based interventions (EBIs) have been adapted to LMICs and shown effectiveness in addressing the needs, but most EBIs have not been adopted widely using scalable and sustainable implementation models that leverage and strengthen existing structures. There is a need to apply implementation science methodology to study strategies to effectively scale-up EBIs and sustain the practices in LMICs. Through a cross-sector collaboration, we are carrying out a second-generation investigation of implementation and effectiveness of a school-based mental health EBI, ParentCorps Professional Development (PD), to scale-up and sustain the EBI in Uganda to promote early childhood students' mental health. Our previous studies in Uganda supported that culturally adapted PD resulted in short-term benefits for classrooms, children, and families. However, our previous implementation of PD was relied on mental health professionals (MHPs) to provide PD to teachers. Because of the shortage of MHPs in Uganda, a new scalable implementation model is needed to provide PD at scale. OBJECTIVES/OBJECTIVE:This study tests a new scalable and sustainable PD implementation model and simultaneously studies the effectiveness. This paper describes use of collaboration, task-shifting, and Train-the-Trainer strategies for scaling-up PD, and protocol for studying the effectiveness-implementation of ParentCorps-PD for teachers in urban and rural Ugandan schools. We will examine whether the new scale-up implementation approach will yield anticipated impacts and investigate the underlying effectiveness-implementation mechanisms that contribute to success. In addition, considering the effects of PD on teachers and students will influence by teacher wellness. This study also examines the added value (i.e. impact and costs) of a brief wellness intervention for teachers and students. METHODS:Using a hybrid-type II effectiveness-implementation cluster randomized controlled trial (cRCT), we will randomize 36 schools (18 urban and 18 rural) with 540 teachers and nearly 2000 families to one of three conditions: PD + Teacher-Wellness (PDT), PD alone (PD), and Control. Primary effectiveness outcomes are teachers' use of mental health promoting strategies, teacher stress management, and child mental health. The implementation fidelity/quality for the scale-up model will be monitored. Mixed methods will be employed to examine underlying mechanisms of implementation and impact as well as cost-effectiveness. DISCUSSION/CONCLUSIONS:This research will generate important knowledge regarding the value of an EBI in urban and rural communities in a LMIC, and efforts toward supporting teachers to prevent and manage early signs of children's mental health issues as a potentially cost-effective strategy to promote child population mental health in low resource settings. TRIAL REGISTRATION/BACKGROUND:This trial was registered with ClinicalTrials.gov (registration number: NCT04383327; https://clinicaltrials.gov/ct2/show/NCT04383327 ) on May13, 2020.
PMCID:9206883
PMID: 35718782
ISSN: 1752-4458
CID: 5281762

A sparse additive model for treatment effect-modifier selection

Park, Hyung; Petkova, Eva; Tarpey, Thaddeus; Ogden, R Todd
Sparse additive modeling is a class of effective methods for performing high-dimensional nonparametric regression. This article develops a sparse additive model focused on estimation of treatment effect modification with simultaneous treatment effect-modifier selection. We propose a version of the sparse additive model uniquely constrained to estimate the interaction effects between treatment and pretreatment covariates, while leaving the main effects of the pretreatment covariates unspecified. The proposed regression model can effectively identify treatment effect-modifiers that exhibit possibly nonlinear interactions with the treatment variable that are relevant for making optimal treatment decisions. A set of simulation experiments and an application to a dataset from a randomized clinical trial are presented to demonstrate the method.
PMID: 32808656
ISSN: 1468-4357
CID: 4566752

Development and Validation of a Treatment Benefit Index to Identify Hospitalized Patients With COVID-19 Who May Benefit From Convalescent Plasma

Park, Hyung; Tarpey, Thaddeus; Liu, Mengling; Goldfeld, Keith; Wu, Yinxiang; Wu, Danni; Li, Yi; Zhang, Jinchun; Ganguly, Dipyaman; Ray, Yogiraj; Paul, Shekhar Ranjan; Bhattacharya, Prasun; Belov, Artur; Huang, Yin; Villa, Carlos; Forshee, Richard; Verdun, Nicole C; Yoon, Hyun Ah; Agarwal, Anup; Simonovich, Ventura Alejandro; Scibona, Paula; Burgos Pratx, Leandro; Belloso, Waldo; Avendaño-Solá, Cristina; Bar, Katharine J; Duarte, Rafael F; Hsue, Priscilla Y; Luetkemeyer, Anne F; Meyfroidt, Geert; Nicola, André M; Mukherjee, Aparna; Ortigoza, Mila B; Pirofski, Liise-Anne; Rijnders, Bart J A; Troxel, Andrea; Antman, Elliott M; Petkova, Eva
Importance:Identifying which patients with COVID-19 are likely to benefit from COVID-19 convalescent plasma (CCP) treatment may have a large public health impact. Objective:To develop an index for predicting the expected relative treatment benefit from CCP compared with treatment without CCP for patients hospitalized for COVID-19 using patients' baseline characteristics. Design, Setting, and Participants:This prognostic study used data from the COMPILE study, ie, a meta-analysis of pooled individual patient data from 8 randomized clinical trials (RCTs) evaluating CCP vs control in adults hospitalized for COVID-19 who were not receiving mechanical ventilation at randomization. A combination of baseline characteristics, termed the treatment benefit index (TBI), was developed based on 2287 patients in COMPILE using a proportional odds model, with baseline characteristics selected via cross-validation. The TBI was externally validated on 4 external data sets: the Expanded Access Program (1896 participants), a study conducted under Emergency Use Authorization (210 participants), and 2 RCTs (with 80 and 309 participants). Exposure:Receipt of CCP. Main Outcomes and Measures:World Health Organization (WHO) 11-point ordinal COVID-19 clinical status scale and 2 derivatives of it (ie, WHO score of 7-10, indicating mechanical ventilation to death, and WHO score of 10, indicating death) at day 14 and day 28 after randomization. Day 14 WHO 11-point ordinal scale was used as the primary outcome to develop the TBI. Results:A total of 2287 patients were included in the derivation cohort, with a mean (SD) age of 60.3 (15.2) years and 815 (35.6%) women. The TBI provided a continuous gradation of benefit, and, for clinical utility, it was operationalized into groups of expected large clinical benefit (B1; 629 participants in the derivation cohort [27.5%]), moderate benefit (B2; 953 [41.7%]), and potential harm or no benefit (B3; 705 [30.8%]). Patients with preexisting conditions (diabetes, cardiovascular and pulmonary diseases), with blood type A or AB, and at an early COVID-19 stage (low baseline WHO scores) were expected to benefit most, while those without preexisting conditions and at more advanced stages of COVID-19 could potentially be harmed. In the derivation cohort, odds ratios for worse outcome, where smaller odds ratios indicate larger benefit from CCP, were 0.69 (95% credible interval [CrI], 0.48-1.06) for B1, 0.82 (95% CrI, 0.61-1.11) for B2, and 1.58 (95% CrI, 1.14-2.17) for B3. Testing on 4 external datasets supported the validation of the derived TBIs. Conclusions and Relevance:The findings of this study suggest that the CCP TBI is a simple tool that can quantify the relative benefit from CCP treatment for an individual patient hospitalized with COVID-19 that can be used to guide treatment recommendations. The TBI precision medicine approach could be especially helpful in a pandemic.
PMCID:8790670
PMID: 35076698
ISSN: 2574-3805
CID: 5153212

A single-index model with a surface-link for optimizing individualized dose rules

Park, Hyung; Petkova, Eva; Tarpey, Thaddeus; Ogden, R Todd
This paper focuses on the problem of modeling and estimating interaction effects between covariates and a continuous treatment variable on an outcome, using a single-index regression. The primary motivation is to estimate an optimal individualized dose rule and individualized treatment effects. To model possibly nonlinear interaction effects between patients' covariates and a continuous treatment variable, we employ a two-dimensional penalized spline regression on an index-treatment domain, where the index is defined as a linear projection of the covariates. The method is illustrated using two applications as well as simulation experiments. A unique contribution of this work is in the parsimonious (single-index) parametrization specifically defined for the interaction effect term.
PMCID:9306450
PMID: 35873662
ISSN: 1061-8600
CID: 5387832

A constrained single-index regression for estimating interactions between a treatment and covariates

Park, Hyung; Petkova, Eva; Tarpey, Thaddeus; Ogden, R Todd
We consider a single-index regression model, uniquely constrained to estimate interactions between a set of pretreatment covariates and a treatment variable on their effects on a response variable, in the context of analyzing data from randomized clinical trials. We represent interaction effect terms of the model through a set of treatment-specific flexible link functions on a linear combination of the covariates (a single index), subject to the constraint that the expected value given the covariates equals zero, while leaving the main effects of the covariates unspecified. We show that the proposed semiparametric estimator is consistent for the interaction term of the model, and that the efficiency of the estimator can be improved with an augmentation procedure. The proposed single-index regression provides a flexible and interpretable modeling approach to optimizing individualized treatment rules based on patients' data measured at baseline, as illustrated by simulation examples and an application to data from a depression clinical trial. This article is protected by copyright. All rights reserved.
PMID: 32573759
ISSN: 1541-0420
CID: 4493012

A single-index model with multiple-links

Park, Hyung; Petkova, Eva; Tarpey, Thaddeus; Ogden, R Todd
In a regression model for treatment outcome in a randomized clinical trial, a treatment effect modifier is a covariate that has an interaction with the treatment variable, implying that the treatment efficacies vary across values of such a covariate. In this paper, we present a method for determining a composite variable from a set of baseline covariates, that can have a nonlinear association with the treatment outcome, and acts as a composite treatment effect modifier. We introduce a parsimonious generalization of the single-index models that targets the effect of the interaction between the treatment conditions and the vector of covariates on the outcome, a single-index model with multiple-links (SIMML) that estimates a single linear combination of the covariates (i.e., a single-index), with treatment-specific nonparametric link functions. The approach emphasizes a focus on the treatment-by-covariates interaction effects on the treatment outcome that are relevant for making optimal treatment decisions. Asymptotic results for estimator are obtained under possible model misspecification. A treatment decision rule based on the derived single-index is defined, and it is compared to other methods for estimating optimal treatment decision rules. An application to a clinical trial for the treatment of depression is presented.
PMCID:7441812
PMID: 32831459
ISSN: 0378-3758
CID: 4575092

Optimising treatment decision rules through generated effect modifiers: a precision medicine tutorial

Petkova, Eva; Park, Hyung; Ciarleglio, Adam; Todd Ogden, R; Tarpey, Thaddeus
This tutorial introduces recent developments in precision medicine for estimating treatment decision rules. The objective of these developments is to advance personalised healthcare by identifying an optimal treatment option for each individual patient based on each patient's characteristics. The methods detailed in this tutorial define composite variables from the patient measures that can be viewed as 'biosignatures' for differential treatment response, which we have termed 'generated effect modifiers'. In contrast to most machine learning approaches to precision medicine, these biosignatures are derived from linear and non-linear regression models and thus have the advantage of easy visualisation and ready interpretation. The methods are illustrated using examples from randomised clinical trials.
PMID: 31791433
ISSN: 2056-4724
CID: 4218142

Logistic regression error-in-covariate models for longitudinal high-dimensional covariates

Park, Hyung; Lee, Seonjoo
We consider a logistic regression model for a binary response where part of its covariates are subject-specific random intercepts and slopes from a large number of longitudinal covariates. These random effect covariates must be estimated from the observed data, and therefore, the model essentially involves errors in covariates. Because of high dimension and high correlation of the random effects, we employ longitudinal principal component analysis to reduce the total number of random effects to some manageable number of random effects. To deal with errors in covariates, we extend the conditional-score equation approach to this moderate dimensional logistic regression model with random effect covariates. To reliably solve the conditional-score equations in moderate/high dimension, we apply a majorization on the first derivative of the conditional-score functions and a penalized estimation by the smoothly clipped absolute deviation. The method was evaluated through a set of simulation studies and applied to a data set with longitudinal cortical thickness of 68 regions of interest to identify biomarkers that are related to dementia transition.
PMCID:7654973
PMID: 33177749
ISSN: 0038-9986
CID: 5231002

Managing Populations with Unimodal Dynamics

Levins, Richard; Awerbuch, Tamara; Park, Hyung
ORIGINAL:0016282
ISSN: 2152-7385
CID: 5363562