Searched for: in-biosketch:yes
person:pendsj01
A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX
Pendse, Jay; Ramachandran, Prasanna V; Na, Jianbo; Narisu, Narisu; Fink, Jill L; Cagan, Ross L; Collins, Francis S; Baranski, Thomas J
BACKGROUND:Genome-wide association studies (GWAS) identify regions of the genome that are associated with particular traits, but do not typically identify specific causative genetic elements. For example, while a large number of single nucleotide polymorphisms associated with type 2 diabetes (T2D) and related traits have been identified by human GWAS, only a few genes have functional evidence to support or to rule out a role in cellular metabolism or dietary interactions. Here, we use a recently developed Drosophila model in which high-sucrose feeding induces phenotypes similar to T2D to assess orthologs of human GWAS-identified candidate genes for risk of T2D and related traits. RESULTS:Disrupting orthologs of certain T2D candidate genes (HHEX, THADA, PPARG, KCNJ11) led to sucrose-dependent toxicity. Tissue-specific knockdown of the HHEX ortholog dHHEX (CG7056) directed metabolic defects and enhanced lethality; for example, fat-body-specific loss of dHHEX led to increased hemolymph glucose and reduced insulin sensitivity. CONCLUSION/CONCLUSIONS:Candidate genes identified in human genetic studies of metabolic traits can be prioritized and functionally characterized using a simple Drosophila approach. To our knowledge, this is the first large-scale effort to study the functional interaction between GWAS-identified candidate genes and an environmental risk factor such as diet in a model organism system.
PMCID:3608171
PMID: 23445342
ISSN: 1471-2164
CID: 4184202
A Drosophila model of high sugar diet-induced cardiomyopathy
Na, Jianbo; Musselman, Laura Palanker; Pendse, Jay; Baranski, Thomas J; Bodmer, Rolf; Ocorr, Karen; Cagan, Ross
Diets high in carbohydrates have long been linked to progressive heart dysfunction, yet the mechanisms by which chronic high sugar leads to heart failure remain poorly understood. Here we combine diet, genetics, and physiology to establish an adult Drosophila melanogaster model of chronic high sugar-induced heart disease. We demonstrate deterioration of heart function accompanied by fibrosis-like collagen accumulation, insulin signaling defects, and fat accumulation. The result was a shorter life span that was more severe in the presence of reduced insulin and P38 signaling. We provide evidence of a role for hexosamine flux, a metabolic pathway accessed by glucose. Increased hexosamine flux led to heart function defects and structural damage; conversely, cardiac-specific reduction of pathway activity prevented sugar-induced heart dysfunction. Our data establish Drosophila as a useful system for exploring specific aspects of diet-induced heart dysfunction and emphasize enzymes within the hexosamine biosynthetic pathway as candidate therapeutic targets.
PMCID:3542070
PMID: 23326243
ISSN: 1553-7404
CID: 4184192
Investigating complexity of protein-protein interactions in focal adhesions
Lele, Tanmay P; Thodeti, Charles K; Pendse, Jay; Ingber, Donald E
The formation of focal adhesions governs cell shape and function; however, there are few measurements of the binding kinetics of focal adhesion proteins in living cells. Here, we used the fluorescence recovery after photobleaching (FRAP) technique, combined with mathematical modeling and scaling analysis to quantify dissociation kinetics of focal adhesion proteins in capillary endothelial cells. Novel experimental protocols based on mathematical analysis were developed to discern the rate-limiting step during FRAP. Values for the dissociation rate constant k(OFF) ranged over an order of magnitude from 0.009+/-0.001/s for talin to 0.102+/-0.010/s for FAK, indicating that talin is bound more strongly than other proteins in focal adhesions. Comparisons with in vitro measurements reveal that multiple focal adhesion proteins form a network of bonds, rather than binding in a pair-wise manner in these anchoring structures in living cells.
PMCID:2730744
PMID: 18331831
ISSN: 1090-2104
CID: 4184182
Nanostructured magnetizable materials that switch cells between life and death
Polte, Thomas R; Shen, Mengyan; Karavitis, John; Montoya, Martin; Pendse, Jay; Xia, Shannon; Mazur, Eric; Ingber, Donald E
Development of biochips containing living cells for biodetection, drug screening and tissue engineering applications is limited by a lack of reconfigurable material interfaces and actuators. Here we describe a new class of nanostructured magnetizable materials created with a femtosecond laser surface etching technique that function as multiplexed magnetic field gradient concentrators. When combined with magnetic microbeads coated with cell adhesion ligands, these materials form microarrays of 'virtual' adhesive islands that can support cell attachment, resist cell traction forces and maintain cell viability. A cell death (apoptosis) response can then be actuated on command by removing the applied magnetic field, thereby causing cell retraction, rounding and detachment. This simple technology may be used to create reconfigurable interfaces that allow users to selectively discard contaminated or exhausted cellular sensor elements, and to replace them with new living cellular components for continued operation in future biomedical microdevices and biodetectors.
PMID: 17339050
ISSN: 0142-9612
CID: 4184172
Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells
Lele, Tanmay P; Pendse, Jay; Kumar, Sanjay; Salanga, Matthew; Karavitis, John; Ingber, Donald E
The formation of focal adhesions that mediate alterations of cell shape and movement is controlled by a mechanochemical mechanism in which cytoskeletal tensional forces drive changes in molecular assembly; however, little is known about the molecular biophysical basis of this response. Here, we describe a method to measure the unbinding rate constant k(OFF) of individual GFP-labeled focal adhesion molecules in living cells by modifying the fluorescence recovery after photobleaching (FRAP) technique and combining it with mathematical modeling. Using this method, we show that decreasing cellular traction forces on focal adhesions by three different techniques--chemical inhibition of cytoskeletal tension generation, laser incision of an associated actin stress fiber, or use of compliant extracellular matrices--increases the k(OFF) of the focal adhesion protein zyxin. In contrast, the k(OFF) of another adhesion protein, vinculin, remains unchanged after tension dissipation. Mathematical models also demonstrate that these force-dependent increases in zyxin's k(OFF) that occur over seconds are sufficient to quantitatively predict large-scale focal adhesion disassembly that occurs physiologically over many minutes. These findings demonstrate that the molecular binding kinetics of some, but not all, focal adhesion proteins are sensitive to mechanical force, and suggest that force-dependent changes in this biophysical parameter may govern the supramolecular events that underlie focal adhesion remodeling in living cells.
PMID: 16288479
ISSN: 0021-9541
CID: 4184162