Searched for: in-biosketch:yes
person:rothee02
ORC1 binds to cis-transcribed RNAs for efficient activation of replication origins
Mas, Aina Maria; Goñi, Enrique; Ruiz de Los Mozos, Igor; Arcas, Aida; Statello, Luisa; González, Jovanna; Blázquez, Lorea; Lee, Wei Ting Chelsea; Gupta, Dipika; Sejas, Ãlvaro; Hoshina, Shoko; Armaos, Alexandros; Tartaglia, Gian Gaetano; Waga, Shou; Ule, Jernej; Rothenberg, Eli; Gómez, MarÃa; Huarte, Maite
Cells must coordinate the activation of thousands of replication origins dispersed throughout their genome. Active transcription is known to favor the formation of mammalian origins, although the role that RNA plays in this process remains unclear. We show that the ORC1 subunit of the human Origin Recognition Complex interacts with RNAs transcribed from genes with origins in their transcription start sites (TSSs), displaying a positive correlation between RNA binding and origin activity. RNA depletion, or the use of ORC1 RNA-binding mutant, result in inefficient activation of proximal origins, linked to impaired ORC1 chromatin release. ORC1 RNA binding activity resides in its intrinsically disordered region, involved in intra- and inter-molecular interactions, regulation by phosphorylation, and phase-separation. We show that RNA binding favors ORC1 chromatin release, by regulating its phosphorylation and subsequent degradation. Our results unveil a non-coding function of RNA as a dynamic component of the chromatin, orchestrating the activation of replication origins.
PMCID:10366126
PMID: 37488096
ISSN: 2041-1723
CID: 5592002
Outlining cardiac ion channel protein interactors and their signature in the human electrocardiogram
Maurya, Svetlana; Mills, Robert W.; Kahnert, Konstantin; Chiang, David Y.; Bertoli, Giorgia; Lundegaard, Pia R.; Duran, Marta Perez Hernandez; Zhang, Mingliang; Rothenberg, Eli; George, Alfred L.; MacRae, Calum A.; Delmar, Mario; Lundby, Alicia
Protein"“protein interactions are essential for normal cellular processes and signaling events. Defining these interaction networks is therefore crucial for understanding complex cellular functions and interpretation of disease-associated gene variants. We need to build a comprehensive picture of the interactions, their affinities and interdependencies in the specific organ to decipher hitherto poorly understood signaling mechanisms through ion channels. Here we report the experimental identification of the ensemble of protein interactors for 13 types of ion channels in murine cardiac tissue. Of these, we validated the functional importance of ten interactors on cardiac electrophysiology through genetic knockouts in zebrafish, gene silencing in mice, super-resolution microscopy and patch clamp experiments. Furthermore, we establish a computational framework to reconstruct human cardiomyocyte ion channel networks from deep proteome mapping of human heart tissue and human heart single-cell gene expression data. Finally, we integrate the ion channel interactome with human population genetics data to identify proteins that influence the electrocardiogram (ECG). We demonstrate that the combined channel network is enriched for proteins influencing the ECG, with 44% of the network proteins significantly associated with an ECG phenotype. Altogether, we define interactomes of 13 major cardiac ion channels, contextualize their relevance to human electrophysiology and validate functional roles of ten interactors, including two regulators of the sodium current (epsin-2 and gelsolin). Overall, our data provide a roadmap for our understanding of the molecular machinery that regulates cardiac electrophysiology.
SCOPUS:85164737756
ISSN: 2731-0590
CID: 5548562
Single-virus tracking reveals variant SARS-CoV-2 spike proteins induce ACE2-independent membrane interactions
Christie, Shaun M; Tada, Takuya; Yin, Yandong; Bhardwaj, Amit; Landau, Nathaniel R; Rothenberg, Eli
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a global health crisis after its emergence in 2019. Replication of the virus is initiated by binding of the viral spike (S) protein to human angiotensin-converting enzyme 2 (ACE2) on the target cell surface. Mutations acquired by SARS-CoV-2 S variants likely influence virus-target cell interaction. Here, using single-virus tracking to capture these initial steps, we observe how viruses carrying variant S interact with target cells. Specificity for ACE2 occurs for viruses with the reference sequence or D614G mutation. Analysis of the Alpha, Beta, and Delta SARS-CoV-2 variant S proteins revealed a progressive altered cell interaction with a reduced dependence on ACE2. Notably, the Delta variant S affinity was independent of ACE2. These enhanced interactions may account for the increased transmissibility of variants. Knowledge of how mutations influence cell interaction is essential for vaccine development against emerging variants of SARS-CoV-2.
PMCID:9733935
PMID: 36490345
ISSN: 2375-2548
CID: 5381732
The non-catalytic role of DNA polymerase epsilon in replication initiation in human cells
Vipat, Sameera; Gupta, Dipika; Jonchhe, Sagun; Anderspuk, Hele; Rothenberg, Eli; Moiseeva, Tatiana N
DNA polymerase epsilon (PolE) in an enzyme essential for DNA replication. Deficiencies and mutations in PolE cause severe developmental abnormalities and cancers. Paradoxically, the catalytic domain of yeast PolE catalytic subunit is dispensable for survival, and its non-catalytic essential function is linked with replicative helicase (CMG) assembly. Less is known about the PolE role in replication initiation in human cells. Here we use an auxin-inducible degron system to study the effect of POLE1 depletion on replication initiation in U2OS cells. POLE1-depleted cells were able to assemble CMG helicase and initiate DNA synthesis that failed shortly after. Expression of POLE1 non-catalytic domain rescued this defect resulting in slow, but continuous DNA synthesis. We propose a model where in human U2OS cells POLE1/POLE2 are dispensable for CMG assembly, but essential during later steps of replication initiation. Our study provides some insights into the role of PolE in replication initiation in human cells.
PMCID:9675812
PMID: 36402816
ISSN: 2041-1723
CID: 5371832
A two-step mechanism governing PARP1-DNA retention by PARP inhibitors
Xue, Huijun; Bhardwaj, Amit; Yin, Yandong; Fijen, Carel; Ephstein, Anastasiya; Zhang, Lianglin; Ding, Xia; Pascal, John M; VanArsdale, Todd L; Rothenberg, Eli
PARP inhibitors (PARPi) have emerged as promising cancer therapeutics capable of targeting specific DNA repair pathways, but their mechanism of action with respect to PARP1-DNA retention remains unclear. Here, we developed single-molecule assays to directly monitor the retention of PARP1 on DNA lesions in real time. Our study reveals a two-step mechanism by which PARPi modulate the retention of PARP1 on DNA lesions, consisting of a primary step of catalytic inhibition via binding competition with NAD+ followed by an allosteric modulation of bound PARPi. While clinically relevant PARPi exhibit distinct allosteric modulation activities that can either increase retention of PARP1 on DNA or induce its release, their retention potencies are predominantly determined by their ability to outcompete NAD+ binding. These findings provide a mechanistic basis for improved PARPi selection according to their characteristic activities and enable further development of more potent inhibitors.
PMCID:9451145
PMID: 36070389
ISSN: 2375-2548
CID: 5332492
Loss of Nuclear Envelope Integrity and Increased Oxidant Production Cause DNA Damage in Adult Hearts Deficient in PKP2: A Molecular Substrate of ARVC
Pérez-Hernández, Marta; van Opbergen, Chantal J M; Bagwan, Navratan; Rasmus Vissing, Christoffer; Marrón-Liñares, Grecia M; Zhang, Mingliang; Torres Vega, Estefania; Sorrentino, Andrea; Drici, Lylia; Sulek, Karolina; Zhai, Ruxu; Hansen, Finn B; Hørby Christensen, Alex; Boesgaard, Søren; Gustafsson, Finn; Rossing, Kasper; Small, Eric M; Davies, Michael J; Rothenberg, Eli; Sato, Priscila; Cerrone, Marina; Jensen, Thomas Hartvig Lindkær; Qvortrup, Klaus; Bundgaard, Henning; Delmar, Mario; Lundby, Alicia
BACKGROUND:gene, which encodes the PKP2 protein (plakophilin-2). METHODS:studied at a time of preserved left ventricular ejection fraction and in human induced pluripotent stem cell-derived PKP2-deficient myocytes. RESULTS: CONCLUSIONS:
PMID: 35959657
ISSN: 1524-4539
CID: 5287322
Preserved cardiac performance and adrenergic response in a rabbit model with decreased ryanodine receptor 2 expression
Zheng, Jingjing; Dooge, Holly C; Pérez-Hernández, Marta; Zhao, Yan-Ting; Chen, Xi; Hernandez, Jonathan J; Valdivia, Carmen R; Palomeque, Julieta; Rothenberg, Eli; Delmar, Mario; Valdivia, Héctor H; Alvarado, Francisco J
Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca2+ required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca2+-dependent arrhythmias, and cardiac performance. We used a constitutive knock-out of RyR2 in rabbits (RyR2-KO) to assess the extent to which a stable decrease in RyR2 expression modulates Ca2+ handling in the heart. We found that homozygous knock-out of RyR2 in rabbits is embryonic lethal. Remarkably, heterozygotes (KO+/-) show ~50% loss of RyR2 protein without developing an overt phenotype at the intact animal and whole heart levels. Instead, we found that KO+/- myocytes show (1) remodeling of RyR2 clusters, favoring smaller groups in which channels are more densely arranged; (2) lower Ca2+ spark frequency and amplitude; (3) slower rate of Ca2+ release and mild but significant desynchronization of the Ca2+ transient; and (4) a significant decrease in the basal phosphorylation of S2031, likely due to increased association between RyR2 and PP2A. Our data show that RyR2 deficiency, although remarkable at the molecular and subcellular level, has only a modest impact on global Ca2+ release and is fully compensated at the whole-heart level. This highlights the redundancy of RyR2 protein expression and the plasticity of the e-c coupling apparatus.
PMID: 35413295
ISSN: 1095-8584
CID: 5201912
USP1-trapping lesions as a source of DNA replication stress and genomic instability
Coleman, Kate E; Yin, Yandong; Lui, Sarah Kit Leng; Keegan, Sarah; Fenyo, David; Smith, Duncan J; Rothenberg, Eli; Huang, Tony T
The deubiquitinase USP1 is a critical regulator of genome integrity through the deubiquitylation of Fanconi Anemia proteins and the DNA replication processivity factor, proliferating cell nuclear antigen (PCNA). Uniquely, following UV irradiation, USP1 self-inactivates through autocleavage, which enables its own degradation and in turn, upregulates PCNA monoubiquitylation. However, the functional role for this autocleavage event during physiological conditions remains elusive. Herein, we discover that cells harboring an autocleavage-defective USP1 mutant, while still able to robustly deubiquitylate PCNA, experience more replication fork-stalling and premature fork termination events. Using super-resolution microscopy and live-cell single-molecule tracking, we show that these defects are related to the inability of this USP1 mutant to be properly recycled from sites of active DNA synthesis, resulting in replication-associated lesions. Furthermore, we find that the removal of USP1 molecules from DNA is facilitated by the DNA-dependent metalloprotease Spartan to counteract the cytotoxicity caused by "USP1-trapping". We propose a utility of USP1 inhibitors in cancer therapy based on their ability to induce USP1-trapping lesions and consequent replication stress and genomic instability in cancer cells, similar to how non-covalent DNA-protein crosslinks cause cytotoxicity by imposing steric hindrances upon proteins involved in DNA transactions.
PMCID:8975806
PMID: 35365626
ISSN: 2041-1723
CID: 5201472
V(D)J Recombination: Recent Insights in Formation of the Recombinase Complex and Recruitment of DNA Repair Machinery
Christie, Shaun M; Fijen, Carel; Rothenberg, Eli
V(D)J recombination is an essential mechanism of the adaptive immune system, producing a diverse set of antigen receptors in developing lymphocytes via regulated double strand DNA break and subsequent repair. DNA cleavage is initiated by the recombinase complex, consisting of lymphocyte specific proteins RAG1 and RAG2, while the repair phase is completed by classical non-homologous end joining (NHEJ). Many of the individual steps of this process have been well described and new research has increased the scale to understand the mechanisms of initiation and intermediate stages of the pathway. In this review we discuss 1) the regulatory functions of RAGs, 2) recruitment of RAGs to the site of recombination and formation of a paired complex, 3) the transition from a post-cleavage complex containing RAGs and cleaved DNA ends to the NHEJ repair phase, and 4) the potential redundant roles of certain factors in repairing the break. Regulatory (non-core) domains of RAGs are not necessary for catalytic activity, but likely influence recruitment and stabilization through interaction with modified histones and conformational changes. To form long range paired complexes, recent studies have found evidence in support of large scale chromosomal contraction through various factors to utilize diverse gene segments. Following the paired cleavage event, four broken DNA ends must now make a regulated transition to the repair phase, which can be controlled by dynamic conformational changes and post-translational modification of the factors involved. Additionally, we examine the overlapping roles of certain NHEJ factors which allows for prevention of genomic instability due to incomplete repair in the absence of one, but are lethal in combined knockouts. To conclude, we focus on the importance of understanding the detail of these processes in regards to off-target recombination or deficiency-mediated clinical manifestations.
PMCID:9099191
PMID: 35573672
ISSN: 2296-634x
CID: 5284182
A basal-level activity of ATR links replication fork surveillance and stress response
Yin, Yandong; Lee, Wei Ting Chelsea; Gupta, Dipika; Xue, Huijun; Tonzi, Peter; Borowiec, James A; Huang, Tony T; Modesti, Mauro; Rothenberg, Eli
Mammalian cells use diverse pathways to prevent deleterious consequences during DNA replication, yet the mechanism by which cells survey individual replisomes to detect spontaneous replication impediments at the basal level, and their accumulation during replication stress, remain undefined. Here, we used single-molecule localization microscopy coupled with high-order-correlation image-mining algorithms to quantify the composition of individual replisomes in single cells during unperturbed replication and under replicative stress. We identified a basal-level activity of ATR that monitors and regulates the amounts of RPA at forks during normal replication. Replication-stress amplifies the basal activity through the increased volume of ATR-RPA interaction and diffusion-driven enrichment of ATR at forks. This localized crowding of ATR enhances its collision probability, stimulating the activation of its replication-stress response. Finally, we provide a computational model describing how the basal activity of ATR is amplified to produce its canonical replication stress response.
PMID: 34473946
ISSN: 1097-4164
CID: 5000152