Searched for: in-biosketch:yes
person:schluj05
Author Correction: Compilation of longitudinal microbiota data and hospitalome from hematopoietic cell transplantation patients
Liao, Chen; Taylor, Bradford P; Ceccarani, Camilla; Fontana, Emily; Amoretti, Luigi A; Wright, Roberta J; Gomes, Antonio L C; Peled, Jonathan U; Taur, Ying; Perales, Miguel-Angel; van den Brink, Marcel R M; Littmann, Eric; Pamer, Eric G; Schluter, Jonas; Xavier, Joao B
PMID: 33893321
ISSN: 2052-4463
CID: 4852802
A metagenomics approach to investigate microbiome sociobiology
Andersen, Sandra B; Schluter, Jonas
PMID: 33593943
ISSN: 1091-6490
CID: 4786782
Microbial dysbiosis is associated with aggressive histology and adverse clinical outcome in B-cell non-Hodgkin lymphoma
Diefenbach, Catherine S; Peters, Brandilyn A; Li, Huilin; Raphael, Bruce; Moskovits, Tibor; Hymes, Kenneth; Schluter, Jonas; Chen, J; Bennani, N Nora; Witzig, Thomas E; Ahn, Jiyoung
B-cell non-Hodgkin lymphoma cell survival depends on poorly understood immune evasion mechanisms. In melanoma, the composition of the gut microbiota (GMB) is associated with immune system regulation and response to immunotherapy. We investigated the association of GMB composition and diversity with lymphoma biology and treatment outcome. Patients with diffuse large B-cell lymphoma (DLBCL), marginal zone (MZL), and follicular lymphoma (FL) were recruited at Mayo Clinic, Minnesota, and Perlmutter Cancer Center, NYU Langone Health. The pretreatment GMB was analyzed using 16S ribosomal RNA gene sequencing. We examined GMB compositions in 3 contexts: lymphoma patients (51) compared with healthy controls (58), aggressive (DLBCL) (8) compared with indolent (FL, MZL) (18), and the association of GMB with immunochemotherapy treatment outcomes (8 responders, 6 nonresponders). Respectively, we found that the pretreatment GMB in lymphoma patients had a distinct composition compared with healthy controls (P < .001); GMB compositions in DLBCL patients were significantly different than indolent patients (P = .01) with a trend toward reduced microbial diversity in DLBCL patients (P = .08); and pretreatment GMB diversity and composition were significant predictors of treatment responses (P = .01). The impact of these pilot results is limited by our small sample size, and should be considered a proof of principle. If validated, our results could lead toward improved treatment outcomes by improving medication stewardship and informing which GMB-targeted therapies should be tested to improve patient outcomes.
PMID: 33635332
ISSN: 2473-9537
CID: 4795112
Compilation of longitudinal microbiota data and hospitalome from hematopoietic cell transplantation patients
Liao, Chen; Taylor, Bradford P; Ceccarani, Camilla; Fontana, Emily; Amoretti, Luigi A; Wright, Roberta J; Gomes, Antonio L C; Peled, Jonathan U; Perales, Miguel-Angel; van den Brink, Marcel R M; Littmann, Eric; Pamer, Eric G; Schluter, Jonas; Xavier, Joao B
The impact of the gut microbiota in human health is affected by several factors including its composition, drug administrations, therapeutic interventions and underlying diseases. Unfortunately, many human microbiota datasets available publicly were collected to study the impact of single variables, and typically consist of outpatients in cross-sectional studies, have small sample numbers and/or lack metadata to account for confounders. These limitations can complicate reusing the data for questions outside their original focus. Here, we provide comprehensive longitudinal patient dataset that overcomes those limitations: a collection of fecal microbiota compositions (>10,000 microbiota samples from >1,000 patients) and a rich description of the "hospitalome" experienced by the hosts, i.e., their drug exposures and other metadata from patients with cancer, hospitalized to receive allogeneic hematopoietic cell transplantation (allo-HCT) at a large cancer center in the United States. We present five examples of how to apply these data to address clinical and scientific questions on host-associated microbial communities.
PMID: 33654104
ISSN: 2052-4463
CID: 4801442
The gut microbiota is associated with immune cell dynamics in humans
Schluter, Jonas; Peled, Jonathan U; Taylor, Bradford P; Markey, Kate A; Smith, Melody; Taur, Ying; Niehus, Rene; Staffas, Anna; Dai, Anqi; Fontana, Emily; Amoretti, Luigi A; Wright, Roberta J; Morjaria, Sejal; Fenelus, Maly; Pessin, Melissa S; Chao, Nelson J; Lew, Meagan; Bohannon, Lauren; Bush, Amy; Sung, Anthony D; Hohl, Tobias M; Perales, Miguel-Angel; van den Brink, Marcel R M; Xavier, Joao B
The gut microbiota influences development1-3 and homeostasis4-7 of the mammalian immune system, and is associated with human inflammatory8 and immune diseases9,10 as well as responses to immunotherapy11-14. Nevertheless, our understanding of how gut bacteria modulate the immune system remains limited, particularly in humans, where the difficulty of direct experimentation makes inference challenging. Here we study hundreds of hospitalized-and closely monitored-patients with cancer receiving haematopoietic cell transplantation as they recover from chemotherapy and stem-cell engraftment. This aggressive treatment causes large shifts in both circulatory immune cell and microbiota populations, enabling the relationships between the two to be studied simultaneously. Analysis of observed daily changes in circulating neutrophil, lymphocyte and monocyte counts and more than 10,000 longitudinal microbiota samples revealed consistent associations between gut bacteria and immune cell dynamics. High-resolution clinical metadata and Bayesian inference allowed us to compare the effects of bacterial genera in relation to those of immunomodulatory medications, revealing a considerable influence of the gut microbiota-together and over time-on systemic immune cell dynamics. Our analysis establishes and quantifies the link between the gut microbiota and the human immune system, with implications for microbiota-driven modulation of immunity.
PMID: 33239790
ISSN: 1476-4687
CID: 4680892
Microbe-derived short chain fatty acids butyrate and propionate are associated with protection from chronic GVHD
Markey, Kate A; Schluter, Jonas; Gomes, Antonio Lc; Littmann, Eric; Pickard, Amanda; Taylor, Bradford P; Giardina, Paul A; Weber, Daniela; Dai, Anqi; Docampo, Melissa; Armijo, Gabriel K; Slingerland, Ann; Slingerland, John; Nichols, Katherine B; Brereton, Daniel G; Clurman, Annelie; Ramos, Ruben J; Rao, Arka; Bush, Amy T; Bohannon, Lauren; Covington, Megan; Lew, Meagan V; Rizzieri, David A; Chao, Nelson J; Maloy, Molly; Cho, Christina; Politikos, Ioannis; Giralt, Sergio; Taur, Ying; Pamer, Eric; Holler, Ernst; Perales, Miguel-Angel; Ponce, Doris M; Devlin, Sean M; Xavier, Joao; Sung, Anthony; Peled, Jonathan U; Cross, Justin R; van den Brink, Marcel Rm
Studies of the relationship between the gastrointestinal microbiota and outcomes in allogeneic hematopoietic stem cell transplantation (allo-HCT) have, thus far, largely focused on early complications, predominantly infection and acute graft-versus-host disease (GVHD). We examined the potential relationship of the microbiome with chronic GVHD (cGVHD) by analyzing stool and plasma samples collected late after allo-HCT using a case-control study design. We found lower circulating concentrations of the microbe-derived short-chain fatty acids (SCFA) propionate and butyrate in day 100 plasma samples from patients who developed cGVHD, compared with those who remained free of this complication in the initial case-control cohort of transplant patients, and in a further cross-sectional cohort from an independent transplant center. An additional cross-sectional patient cohort from a third transplant center was analyzed, however serum was available - rather than plasma - and the differences in SCFA observed in the plasma samples were not recapitulated. In sum, our findings from the primary case-control cohort, and one of two cross-sectional cohorts explored, suggest that the gastrointestinal microbiome may exert immunomodulatory effects in allo-HCT patients at least in part due to control of systemic concentrations of microbe-derived short chain fatty acids.
PMID: 32430495
ISSN: 1528-0020
CID: 4444252
Antibiotic-Induced Shifts in Fecal Microbiota Density and Composition during Hematopoietic Stem Cell Transplantation
Morjaria, Sejal; Schluter, Jonas; Taylor, Bradford P; Littmann, Eric R; Carter, Rebecca A; Fontana, Emily; Peled, Jonathan U; van den Brink, Marcel R M; Xavier, Joao B; Taur, Ying
Dramatic microbiota changes and loss of commensal anaerobic bacteria are associated with adverse outcomes in hematopoietic cell transplantation (HCT) recipients. In this study, we demonstrate these dynamic changes at high resolution through daily stool sampling and assess the impact of individual antibiotics on those changes. We collected 272 longitudinal stool samples (with mostly daily frequency) from 18 patients undergoing HCT and determined their composition by multiparallel 16S rRNA gene sequencing as well as the density of bacteria in stool by quantitative PCR (qPCR). We calculated microbiota volatility to quantify rapid shifts and developed a new dynamic systems inference method to assess the specific impact of antibiotics. The greatest shifts in microbiota composition occurred between stem cell infusion and reconstitution of healthy immune cells. Piperacillin-tazobactam caused the most severe declines among obligate anaerobes. Our approach of daily sampling, bacterial density determination, and dynamic systems modeling allowed us to infer the independent effects of specific antibiotics on the microbiota of HCT patients.
PMCID:6704593
PMID: 31262981
ISSN: 1098-5522
CID: 4298182
The impact of early-life sub-therapeutic antibiotic treatment (STAT) on excessive weight is robust despite transfer of intestinal microbes
Schulfer, Anjelique F; Schluter, Jonas; Zhang, Yilong; Brown, Quincy; Pathmasiri, Wimal; McRitchie, Susan; Sumner, Susan; Li, Huilin; Xavier, Joao B; Blaser, Martin J
The high-fat, high-calorie diets of westernized cultures contribute to the global obesity epidemic, and early life exposure to antibiotics may potentiate those dietary effects. Previous experiments with mice had shown that sub-therapeutic antibiotic treatment (STAT)-even restricted to early life-affected the gut microbiota, altered host metabolism, and increased adiposity throughout the lifetime of the animals. Here we carried out a large-scale cohousing experiment to investigate whether cohousing STAT and untreated (Control) mice would transfer the STAT-perturbed microbiota and transmit its impact on weight. We exposed pregnant dams and their young offspring to either low-dose penicillin (STAT) or water (Control) until weaning, and then followed the offspring as they grew and endured a switch from normal to high-fat diet at week 17 of life. Cohousing, which started at week 4, rapidly approximated the microbiota within cages, lowering the weight of STAT mice relative to non-cohoused mice. The effect, however, varied between cages, and was restricted to the first 16 weeks when diet consisted of normal chow. Once mice switched to high-fat diet, the microbiota α- and β-diversity expanded and the effect of cohousing faded: STAT mice, again, were heavier than control mice independently of cohousing. Metabolomics revealed serum metabolites associated with STAT exposure, but no significant differences were detected in glucose or insulin tolerance. Our results show that cohousing can partly ameliorate the impact of STAT on the gut microbiota but not prevent increased weight with high-fat diet. These observations have implications for microbiota therapies aimed to resolve the collateral damage of antibiotics and their load on human obesity.
PMID: 30651608
ISSN: 1751-7370
CID: 3595352
Gut microbiota dysbiosis and diarrhea in kidney transplant recipients
Lee, John Richard; Magruder, Matthew; Zhang, Lisa; Westblade, Lars F; Satlin, Michael J; Robertson, Amy; Edusei, Emmanuel; Crawford, Carl; Ling, Lilan; Taur, Ying; Schluter, Jonas; Lubetzky, Michelle; Dadhania, Darshana; Pamer, Eric; Suthanthiran, Manikkam
Posttransplant diarrhea is associated with kidney allograft failure and death, but its etiology remains unknown in the majority of cases. Because altered gut microbial ecology is a potential basis for diarrhea, we investigated whether posttransplant diarrhea is associated with gut dysbiosis. We enrolled 71 kidney allograft recipients for serial fecal specimen collections in the first 3 months of transplantation and profiled the gut microbiota using 16S ribosomal RNA (rRNA) gene V4-V5 deep sequencing. The Shannon diversity index was significantly lower in 28 diarrheal fecal specimens from 25 recipients with posttransplant diarrhea than in 112 fecal specimens from 46 recipients without posttransplant diarrhea. We found a lower relative abundance of 13 commensal genera (Benjamini-Hochberg adjusted P ≤ .15) in the diarrheal fecal specimens including the same 4 genera identified in our prior study. The 28 diarrheal fecal specimens were also evaluated by a multiplexed polymerase chain reaction (PCR) assay for 22 bacterial, viral, and protozoan gastrointestinal pathogens, and 26 specimens were negative for infectious etiologies. Using PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) to predict metagenomic functions, we found that diarrheal fecal specimens had a lower abundance of metabolic genes. Our findings suggest that posttransplant diarrhea is not associated with common infectious diarrheal pathogens but with a gut dysbiosis.
PMCID:6301138
PMID: 29920927
ISSN: 1600-6143
CID: 4298162
Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant
Taur, Ying; Coyte, Katharine; Schluter, Jonas; Robilotti, Elizabeth; Figueroa, Cesar; Gjonbalaj, Mergim; Littmann, Eric R; Ling, Lilan; Miller, Liza; Gyaltshen, Yangtsho; Fontana, Emily; Morjaria, Sejal; Gyurkocza, Boglarka; Perales, Miguel-Angel; Castro-Malaspina, Hugo; Tamari, Roni; Ponce, Doris; Koehne, Guenther; Barker, Juliet; Jakubowski, Ann; Papadopoulos, Esperanza; Dahi, Parastoo; Sauter, Craig; Shaffer, Brian; Young, James W; Peled, Jonathan; Meagher, Richard C; Jenq, Robert R; van den Brink, Marcel R M; Giralt, Sergio A; Pamer, Eric G; Xavier, Joao B
Antibiotic treatment can deplete the commensal bacteria of a patient's gut microbiota and, paradoxically, increase their risk of subsequent infections. In allogeneic hematopoietic stem cell transplantation (allo-HSCT), antibiotic administration is essential for optimal clinical outcomes but significantly disrupts intestinal microbiota diversity, leading to loss of many beneficial microbes. Although gut microbiota diversity loss during allo-HSCT is associated with increased mortality, approaches to reestablish depleted commensal bacteria have yet to be developed. We have initiated a randomized, controlled clinical trial of autologous fecal microbiota transplantation (auto-FMT) versus no intervention and have analyzed the intestinal microbiota profiles of 25 allo-HSCT patients (14 who received auto-FMT treatment and 11 control patients who did not). Changes in gut microbiota diversity and composition revealed that the auto-FMT intervention boosted microbial diversity and reestablished the intestinal microbiota composition that the patient had before antibiotic treatment and allo-HSCT. These results demonstrate the potential for fecal sample banking and posttreatment remediation of a patient's gut microbiota after microbiota-depleting antibiotic treatment during allo-HSCT.
PMCID:6468978
PMID: 30257956
ISSN: 1946-6242
CID: 4298172