Searched for: in-biosketch:yes
person:siegec03
Utilization of machine learning for identifying symptom severity military-related PTSD subtypes and their biological correlates
Siegel, Carole E; Laska, Eugene M; Lin, Ziqiang; Xu, Mu; Abu-Amara, Duna; Jeffers, Michelle K; Qian, Meng; Milton, Nicholas; Flory, Janine D; Hammamieh, Rasha; Daigle, Bernie J; Gautam, Aarti; Dean, Kelsey R; Reus, Victor I; Wolkowitz, Owen M; Mellon, Synthia H; Ressler, Kerry J; Yehuda, Rachel; Wang, Kai; Hood, Leroy; Doyle, Francis J; Jett, Marti; Marmar, Charles R
We sought to find clinical subtypes of posttraumatic stress disorder (PTSD) in veterans 6-10 years post-trauma exposure based on current symptom assessments and to examine whether blood biomarkers could differentiate them. Samples were males deployed to Iraq and Afghanistan studied by the PTSD Systems Biology Consortium: a discovery sample of 74 PTSD cases and 71 healthy controls (HC), and a validation sample of 26 PTSD cases and 36 HC. A machine learning method, random forests (RF), in conjunction with a clustering method, partitioning around medoids, were used to identify subtypes derived from 16 self-report and clinician assessment scales, including the clinician-administered PTSD scale for DSM-IV (CAPS). Two subtypes were identified, designated S1 and S2, differing on mean current CAPS total scores: S2 = 75.6 (sd 14.6) and S1 = 54.3 (sd 6.6). S2 had greater symptom severity scores than both S1 and HC on all scale items. The mean first principal component score derived from clinical summary scales was three times higher in S2 than in S1. Distinct RFs were grown to classify S1 and S2 vs. HCs and vs. each other on multi-omic blood markers feature classes of current medical comorbidities, neurocognitive functioning, demographics, pre-military trauma, and psychiatric history. Among these classes, in each RF intergroup comparison of S1, S2, and HC, multi-omic biomarkers yielded the highest AUC-ROCs (0.819-0.922); other classes added little to further discrimination of the subtypes. Among the top five biomarkers in each of these RFs were methylation, micro RNA, and lactate markers, suggesting their biological role in symptom severity.
PMID: 33879773
ISSN: 2158-3188
CID: 4847112
CRF serum levels differentiate PTSD from healthy controls and TBI in military veterans
Ramos-Cejudo, Jaime; Genfi, Afia; Abu-Amara, Duna; Debure, Ludovic; Qian, Meng; Laska, Eugene; Siegel, Carole; Milton, Nicholas; Newman, Jennifer; Blessing, Esther; Li, Meng; Etkin, Amit; Marmar, Charles R; Fossati, Silvia
Background and Objective/UNASSIGNED:Posttraumatic stress disorder (PTSD) is a serious and frequently debilitating psychiatric condition that can occur in people who have experienced traumatic stessors, such as war, violence, sexual assault and other life-threatening events. Treatment of PTSD and traumatic brain injury (TBI) in veterans is challenged by diagnostic complexity, partially due to PTSD and TBI symptom overlap and to the fact that subjective self-report assessments may be influenced by a patient's willingness to share their traumatic experiences and resulting symptoms. Corticotropin-releasing factor (CRF) is one of the main mediators of hypothalamic pituitary adrenal (HPA)-axis responses in stress and anxiety. Methods and Results/UNASSIGNED:We analyzed serum CRF levels in 230 participants including heathy controls (64), and individuals with PTSD (53), TBI (70) or PTSD+TBI (43) by enzyme immunoassay (EIA). Significantly lower CRF levels were found in both the PTSD and PTSD+TBI groups compared to healthy control (PTSD vs Controls: P=0.0014, PTSD + TBI vs Controls: P=0.0011) and chronic TBI participants (PTSD vs TBI: P<0.0001PTSD + TBI vs TBI: P<0.0001) , suggesting a PTSD-related mechanism independent from TBI and associated with CRF reduction. CRF levels negatively correlated with PTSD severity on the CAPS-5 scale in the whole study group. Conclusions/UNASSIGNED:Hyperactivation of the HPA axis has been classically identified in acute stress. However, the recognized enhanced feedback inhibition of the HPA axis in chronic stress supports our findings of lower CRF in PTSD patients. This study suggests that reduced serum CRF in PTSD should be further investigated. Future validation studies will establish if CRF is a possible blood biomarker for PTSD and/or for differentiating PTSD and chronic TBI symptomatology.
PMCID:8764614
PMID: 35211666
ISSN: 2575-5609
CID: 5165012
Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder
Dean, Kelsey R; Hammamieh, Rasha; Mellon, Synthia H; Abu-Amara, Duna; Flory, Janine D; Guffanti, Guia; Wang, Kai; Daigle, Bernie J; Gautam, Aarti; Lee, Inyoul; Yang, Ruoting; Almli, Lynn M; Bersani, F Saverio; Chakraborty, Nabarun; Donohue, Duncan; Kerley, Kimberly; Kim, Taek-Kyun; Laska, Eugene; Young Lee, Min; Lindqvist, Daniel; Lori, Adriana; Lu, Liangqun; Misganaw, Burook; Muhie, Seid; Newman, Jennifer; Price, Nathan D; Qin, Shizhen; Reus, Victor I; Siegel, Carole; Somvanshi, Pramod R; Thakur, Gunjan S; Zhou, Yong; Hood, Leroy; Ressler, Kerry J; Wolkowitz, Owen M; Yehuda, Rachel; Jett, Marti; Doyle, Francis J; Marmar, Charles
Post-traumatic stress disorder (PTSD) impacts many veterans and active duty soldiers, but diagnosis can be problematic due to biases in self-disclosure of symptoms, stigma within military populations, and limitations identifying those at risk. Prior studies suggest that PTSD may be a systemic illness, affecting not just the brain, but the entire body. Therefore, disease signals likely span multiple biological domains, including genes, proteins, cells, tissues, and organism-level physiological changes. Identification of these signals could aid in diagnostics, treatment decision-making, and risk evaluation. In the search for PTSD diagnostic biomarkers, we ascertained over one million molecular, cellular, physiological, and clinical features from three cohorts of male veterans. In a discovery cohort of 83 warzone-related PTSD cases and 82 warzone-exposed controls, we identified a set of 343 candidate biomarkers. These candidate biomarkers were selected from an integrated approach using (1) data-driven methods, including Support Vector Machine with Recursive Feature Elimination and other standard or published methodologies, and (2) hypothesis-driven approaches, using previous genetic studies for polygenic risk, or other PTSD-related literature. After reassessment of ~30% of these participants, we refined this set of markers from 343 to 28, based on their performance and ability to track changes in phenotype over time. The final diagnostic panel of 28 features was validated in an independent cohort (26 cases, 26 controls) with good performance (AUC = 0.80, 81% accuracy, 85% sensitivity, and 77% specificity). The identification and validation of this diverse diagnostic panel represents a powerful and novel approach to improve accuracy and reduce bias in diagnosing combat-related PTSD.
PMID: 31501510
ISSN: 1476-5578
CID: 4071472
Gabapentin Enacarbil Extended-Release Versus Placebo: A Likely Responder Reanalysis of a Randomized Clinical Trial
Laska, Eugene M; Siegel, Carole E; Lin, Ziqiang; Bogenschutz, Michael; Marmar, Charles R
BACKGROUND:We reanalyzed a multisite 26-week randomized double-blind placebo-controlled clinical trial of 600 mg twice-a-day Gabapentin Enacarbil Extended-Release (GE-XR), a gabapentin prodrug, designed to evaluate safety and efficacy for treating alcohol use disorder. In the original analysis (n = 338), published in 2019, GE-XR did not differ from placebo. Our aim is to advance precision medicine by identifying likely responders to GE-XR from the trial data and to determine for likely responders if GE-XR is causally superior to placebo. METHODS:The primary outcome measure in the reanalysis is the reduction from baseline of the number of heavy drinking days (ΔHDD). Baseline features including measures of alcohol use, anxiety, depression, mood states, sleep, and impulsivity were used in a random forest (RF) model to predict ΔHDD to treatment with GE-XR based on those assigned to GE-XR. The resulting RF model was used to obtain predicted outcomes for those randomized to GE-XR and counterfactually to those randomized to placebo. Likely responders to GE-XR were defined as those predicted to have a reduction of 14 days or more. Tests of causal superiority of GE-XR to placebo were obtained for likely responders and for the whole sample. RESULTS:For likely responders, GE-XR was causally superior to placebo (p < 0.0033), while for the whole sample, there was no difference. Likely responders exhibited improved outcomes for the related outcomes of percent HDD and drinks per week. Compared with unlikely responders, at baseline likely responders had higher HDDs; lower levels of anxiety, depression, and general mood disturbances; and higher levels of cognitive and motor impulsivity. CONCLUSIONS:There are substantial causal benefits of treatment with GE-XR for a subset of patients predicted to be likely responders. The likely responder statistical paradigm is a promising approach for analyzing randomized clinical trials to advance personalized treatment.
PMCID:7540534
PMID: 33460198
ISSN: 1530-0277
CID: 4760242
Predeployment neurocognitive functioning predicts postdeployment posttraumatic stress in Army personnel
Samuelson, Kristin W; Newman, Jennifer; Abu Amara, Duna; Qian, Meng; Li, Meng; Schultebraucks, Katharina; Purchia, Emily; Genfi, Afia; Laska, Eugene; Siegel, Carole; Hammamieh, Rasha; Gautam, Aarti; Jett, Marti; Marmar, Charles R
OBJECTIVE:The Fort Campbell Cohort study was designed to assess predeployment biological and behavioral markers and build predictive models to identify risk and resilience for posttraumatic stress disorder (PTSD) following deployment. This article addresses neurocognitive functioning variables as potential prospective predictors. METHOD/METHODS:In a sample of 403 soldiers, we examined whether PTSD symptom severity (using the PTSD Checklist) as well as posttraumatic stress trajectories could be prospectively predicted by measures of executive functioning (using two web-based tasks from WebNeuro) assessed predeployment. RESULTS:Controlling for age, gender, education, prior number of deployments, childhood trauma exposure, and PTSD symptom severity at Phase 1, linear regression models revealed that predeployment sustained attention and inhibitory control performance were significantly associated with postdeployment PTSD symptom severity. We also identified two posttraumatic stress trajectories utilizing latent growth mixture models. The "resilient" group consisted of 90.9% of the soldiers who exhibited stable low levels of PTSD symptoms from pre- to postdeployment. The "increasing" group consisted of 9.1% of the soldiers, who exhibited an increase in PTSD symptoms following deployment, crossing a threshold for diagnosis based on PTSD Checklist scores. Logistic regression models predicting trajectory revealed a similar pattern of findings as the linear regression models, in which predeployment sustained attention (95% CI of odds ratio: 1.0109, 1.0558) and inhibitory control (95% CI: 1.0011, 1.0074) performance were significantly associated with postdeployment PTSD trajectory. CONCLUSIONS:These findings have clinical implications for understanding the pathogenesis of PTSD and building preventative programs for military personnel. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
PMID: 31789568
ISSN: 1931-1559
CID: 4217962
Identifying Subtypes of PTSD [Meeting Abstract]
Siegel, Carole; Laska, Eugene; Lin, Ziqiang; Marmar, Charles
ISI:000535308200019
ISSN: 0006-3223
CID: 4560712
Speech-based markers for posttraumatic stress disorder in US veterans
Marmar, Charles R; Brown, Adam D; Qian, Meng; Laska, Eugene; Siegel, Carole; Li, Meng; Abu-Amara, Duna; Tsiartas, Andreas; Richey, Colleen; Smith, Jennifer; Knoth, Bruce; Vergyri, Dimitra
BACKGROUND:The diagnosis of posttraumatic stress disorder (PTSD) is usually based on clinical interviews or self-report measures. Both approaches are subject to under- and over-reporting of symptoms. An objective test is lacking. We have developed a classifier of PTSD based on objective speech-marker features that discriminate PTSD cases from controls. METHODS:Speech samples were obtained from warzone-exposed veterans, 52 cases with PTSD and 77 controls, assessed with the Clinician-Administered PTSD Scale. Individuals with major depressive disorder (MDD) were excluded. Audio recordings of clinical interviews were used to obtain 40,526 speech features which were input to a random forest (RF) algorithm. RESULTS:The selected RF used 18 speech features and the receiver operating characteristic curve had an area under the curve (AUC) of 0.954. At a probability of PTSD cut point of 0.423, Youden's index was 0.787, and overall correct classification rate was 89.1%. The probability of PTSD was higher for markers that indicated slower, more monotonous speech, less change in tonality, and less activation. Depression symptoms, alcohol use disorder, and TBI did not meet statistical tests to be considered confounders. CONCLUSIONS:This study demonstrates that a speech-based algorithm can objectively differentiate PTSD cases from controls. The RF classifier had a high AUC. Further validation in an independent sample and appraisal of the classifier to identify those with MDD only compared with those with PTSD comorbid with MDD is required.
PMID: 31006959
ISSN: 1520-6394
CID: 3821282
PASS: A Behavioral Health Care Program for Culturally Diverse Youths and Their Families
Reid-Rose, Lenora; Morris, Neville; Siegel, Carole
PMID: 30929617
ISSN: 1557-9700
CID: 3783772
Pre-Deployment Risk Factors for PTSD in Afghanistan Veterans: A Machine Learning Approach for Analyzing Multivariate Predictors [Meeting Abstract]
Schultebraucks, Katharina; Qian, Meng; Abu-Amara, Duna; Dean, Kelsey; Laska, Eugene; Siegel, Carole; Gautam, Aarti; Guffanti, Guia; Hammamieh, Rasha; Blessing, Esther; Etkin, Amit; Ressler, Kerry; Doyle, Francis J., III; Jett, Marti; Marmar, Charles
ISI:000472661000741
ISSN: 0006-3223
CID: 3974022
The nonlinear relationship between cerebrospinal fluid Aβ42 and tau in preclinical Alzheimer's disease
de Leon, Mony J; Pirraglia, Elizabeth; Osorio, Ricardo S; Glodzik, Lidia; Saint-Louis, Les; Kim, Hee-Jin; Fortea, Juan; Fossati, Silvia; Laska, Eugene; Siegel, Carole; Butler, Tracy; Li, Yi; Rusinek, Henry; Zetterberg, Henrik; Blennow, Kaj
Cerebrospinal fluid (CSF) studies consistently show that CSF levels of amyloid-beta 1-42 (Aβ42) are reduced and tau levels increased prior to the onset of cognitive decline related to Alzheimer's disease (AD). However, the preclinical prediction accuracy for low CSF Aβ42 levels, a surrogate for brain Aβ42 deposits, is not high. Moreover, the pathology data suggests a course initiated by tauopathy contradicting the contemporary clinical view of an Aβ initiated cascade. CSF Aβ42 and tau data from 3 normal aging cohorts (45-90 years) were combined to test both cross-sectional (n = 766) and longitudinal (n = 651) hypotheses: 1) that the relationship between CSF levels of Aβ42 and tau are not linear over the adult life-span; and 2) that non-linear models improve the prediction of cognitive decline. Supporting the hypotheses, the results showed that a u-shaped quadratic fit (Aβ2) best describes the relationship for CSF Aβ42 with CSF tau levels. Furthermore we found that the relationship between Aβ42 and tau changes with age-between 45 and 70 years there is a positive linear association, whereas between 71 and 90 years there is a negative linear association between Aβ42 and tau. The quadratic effect appears to be unique to Aβ42, as Aβ38 and Aβ40 showed only positive linear relationships with age and CSF tau. Importantly, we observed the prediction of cognitive decline was improved by considering both high and low levels of Aβ42. Overall, these data suggest an earlier preclinical stage than currently appreciated, marked by CSF elevations in tau and accompanied by either elevations or reductions in Aβ42. Future studies are needed to examine potential mechanisms such as failing CSF clearance as a common factor elevating CSF Aβxx analyte levels prior to Aβ42 deposition in brain.
PMCID:5802432
PMID: 29415068
ISSN: 1932-6203
CID: 2947732