Searched for: in-biosketch:yes
person:ueberb01
Raphe and ventrolateral medulla proteomics in sudden unexplained death in childhood with febrile seizure history
Leitner, Dominique F; William, Christopher; Faustin, Arline; Kanshin, Evgeny; Snuderl, Matija; McGuone, Declan; Wisniewski, Thomas; Ueberheide, Beatrix; Gould, Laura; Devinsky, Orrin
Sudden unexplained death in childhood (SUDC) is death of a child ≥ 12 months old that is unexplained after autopsy and detailed analyses. Among SUDC cases, ~ 30% have febrile seizure (FS) history, versus 2-5% in the general population. SUDC cases share features with sudden unexpected death in epilepsy (SUDEP) and sudden infant death syndrome (SIDS), in which brainstem autonomic dysfunction is implicated. To understand whether brainstem protein changes are associated with FS history in SUDC, we performed label-free quantitative mass spectrometry on microdissected midbrain dorsal raphe, medullary raphe, and the ventrolateral medulla (n = 8 SUDC-noFS, n = 11 SUDC-FS). Differential expression analysis between SUDC-FS and SUDC-noFS at p < 0.05 identified 178 altered proteins in dorsal raphe, 344 in medullary raphe, and 100 in the ventrolateral medulla. These proteins were most significantly associated with increased eukaryotic translation initiation (p = 3.09 × 10-7, z = 1.00), eukaryotic translation elongation (p = 6.31 × 10-49, z = 6.01), and coagulation system (p = 1.32 × 10-5, z = 1.00). The medullary raphe had the strongest enrichment for altered signaling pathways, including with comparisons to three other brain regions previously analyzed (frontal cortex, hippocampal dentate gyrus, cornu ammonus). Immunofluorescent tissue analysis of serotonin receptors identified 2.1-fold increased 5HT2A in the medullary raphe of SUDC-FS (p = 0.025). Weighted gene correlation network analysis (WGCNA) of case history indicated that longer FS history duration significantly correlated with protein levels in the medullary raphe and ventrolateral medulla; the most significant gene ontology biological processes were decreased cellular respiration (p = 9.8 × 10-5, corr = - 0.80) in medullary raphe and decreased synaptic vesicle cycle (p = 1.60 × 10-7, corr = - 0.90) in the ventrolateral medulla. Overall, FS in SUDC was associated with more protein differences in the medullary raphe and was related with increased translation-related signaling pathways. Future studies should assess whether these changes result from FS or may in some way predispose to FS or SUDC.
PMCID:11604820
PMID: 39607506
ISSN: 1432-0533
CID: 5763572
Geranylgeranylated SCFFBXO10 regulates selective outer mitochondrial membrane proteostasis and function
Bhat, Sameer Ahmed; Vasi, Zahra; Jiang, Liping; Selvaraj, Shruthi; Ferguson, Rachel; Salarvand, Sanaz; Gudur, Anish; Adhikari, Ritika; Castillo, Veronica; Ismail, Hagar; Dhabaria, Avantika; Ueberheide, Beatrix; Kuchay, Shafi
Compartment-specific cellular membrane protein turnover is not well understood. We show that FBXO10, the interchangeable component of the cullin-RING-ligase 1 complex, undergoes lipid modification with geranylgeranyl isoprenoid at cysteine953, facilitating its dynamic trafficking to the outer mitochondrial membrane (OMM). FBXO10 polypeptide lacks a canonical mitochondrial targeting sequence (MTS); instead, its geranylgeranylation at C953 and interaction with two cytosolic factors, cytosolic factor-like δ subunit of type 6 phosphodiesterase (PDE6δ; a prenyl-group-binding protein) and heat shock protein 90 (HSP90; a chaperone), orchestrate specific OMM targeting of prenyl-FBXO10. The FBXO10(C953S) mutant redistributes away from the OMM, impairs mitochondrial ATP production and membrane potential, and increases fragmentation. Phosphoglycerate mutase-5 (PGAM5) was identified as a potential substrate of FBXO10 at the OMM using comparative quantitative proteomics of enriched mitochondria. FBXO10 loss or expression of prenylation-deficient FBXO10(C953S) inhibited PGAM5 degradation, disrupted mitochondrial homeostasis, and impaired myogenic differentiation of human induced pluripotent stem cells (iPSCs) and murine myoblasts. Our studies identify a mechanism for FBXO10-mediated regulation of selective mitochondrial proteostasis potentially amenable to therapeutic intervention.
PMID: 39306844
ISSN: 2211-1247
CID: 5739382
Identification of SLC25A46 interaction interfaces with mitochondrial membrane fusogens Opa1 and Mfn2
Boopathy, Sivakumar; Luce, Bridget E; Lugo, Camila Makhlouta; Hakim, Pusparanee; McDonald, Julie; Kim, Ha Lin; Ponce, Jackeline; Ueberheide, Beatrix M; Chao, Luke H
Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier protein SLC25A46 interacts with both the outer and inner-membrane dynamin family GTPases Mfn1/2 and Opa1. While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with Mfn1/2 and Opa1 to regulate membrane fusion is not understood. In this study, we use crosslinking mass-spectrometry and AlphaFold 2 modeling to identify interfaces mediating a SLC25A46 interactions with Opa1 and Mfn2. We reveal that the bundle signaling element of Opa1 interacts with SLC25A46, and present evidence of a Mfn2 interaction involving the SLC25A46 cytosolic face. We validate these newly identified interaction interfaces and show that they play a role in mitochondrial network maintenance.
PMID: 39222684
ISSN: 1083-351x
CID: 5687642
Differences in the cerebral amyloid angiopathy proteome in Alzheimer's disease and mild cognitive impairment
Leitner, Dominique; Kavanagh, Tomas; Kanshin, Evgeny; Balcomb, Kaleah; Pires, Geoffrey; Thierry, Manon; Suazo, Jianina I; Schneider, Julie; Ueberheide, Beatrix; Drummond, Eleanor; Wisniewski, Thomas
Cerebral amyloid angiopathy (CAA) is characterized by amyloid beta (Aβ) deposition in cerebrovasculature. It is prevalent with aging and Alzheimer's disease (AD), associated with intracerebral hemorrhage, and contributes to cognitive deficits. To better understand molecular mechanisms, CAA(+) and CAA(-) vessels were microdissected from paraffin-embedded autopsy temporal cortex of age-matched Control (n = 10), mild cognitive impairment (MCI; n = 4), and sporadic AD (n = 6) cases, followed by label-free quantitative mass spectrometry. 257 proteins were differentially abundant in CAA(+) vessels compared to neighboring CAA(-) vessels in MCI, and 289 in AD (p < 0.05, fold-change > 1.5). 84 proteins changed in the same direction in both groups, and many changed in the same direction among proteins significant in at least one group (p < 0.0001, R2 = 0.62). In CAA(+) vessels, proteins significantly increased in both AD and MCI were particularly associated with collagen-containing extracellular matrix, while proteins associated with ribonucleoprotein complex were significantly decreased in both AD and MCI. In neighboring CAA(-) vessels, 61 proteins were differentially abundant in MCI, and 112 in AD when compared to Control cases. Increased proteins in CAA(-) vessels were associated with extracellular matrix, external encapsulating structure, and collagen-containing extracellular matrix in MCI; collagen trimer in AD. Twenty two proteins were increased in CAA(-) vessels of both AD and MCI. Comparison of the CAA proteome with published amyloid-plaque proteomic datasets identified many proteins similarly enriched in CAA and plaques, as well as a protein subset hypothesized as preferentially enriched in CAA when compared to plaques. SEMA3G emerged as a CAA specific marker, validated immunohistochemically and with correlation to pathology levels (p < 0.0001; R2 = 0.90). Overall, the CAA(-) vessel proteomes indicated changes in vessel integrity in AD and MCI in the absence of Aβ, and the CAA(+) vessel proteome was similar in MCI and AD, which was associated with vascular matrix reorganization, protein translation deficits, and blood brain barrier breakdown.
PMCID:11263258
PMID: 39039355
ISSN: 1432-0533
CID: 5699572
Distinct Perception Mechanisms of BACH1 Quaternary Structure Degrons by Two F-box Proteins under Oxidative Stress
Cao, Shiyun; Shi, Huigang; Garcia, Sheena Faye; Kito, Yuki; Shi, Hui; Goldberg, Hailey V; Ponce, Jackeline; Ueberheide, Beatrix; Lignitto, Luca; Pagano, Michele; Zheng, Ning
The transcription factor BACH1 regulates heme homeostasis and oxidative stress responses and promotes cancer metastasis upon aberrant accumulation. Its stability is controlled by two F-box protein ubiquitin ligases, FBXO22 and FBXL17. Here we show that the homodimeric BTB domain of BACH1 functions as a previously undescribed quaternary structure degron, which is deciphered by the two F-box proteins via distinct mechanisms. After BACH1 is released from chromatin by heme, FBXO22 asymmetrically recognizes a cross-protomer interface of the intact BACH1 BTB dimer, which is otherwise masked by the co-repressor NCOR1. If the BACH1 BTB dimer escapes the surveillance by FBXO22 due to oxidative modifications, its quaternary structure integrity is probed by a pair of FBXL17, which simultaneously engage and remodel the two BTB protomers into E3-bound monomers for ubiquitination. By unveiling the multifaceted regulatory mechanisms of BACH1 stability, our studies highlight the abilities of ubiquitin ligases to decode high-order protein assemblies and reveal therapeutic opportunities to block cancer invasion via compound-induced BACH1 destabilization.
PMID: 38895309
ISSN: 2692-8205
CID: 5853952
The influence of APOEε4 on the pTau interactome in sporadic Alzheimer's disease
Thierry, Manon; Ponce, Jackeline; Martà -Ariza, Mitchell; Askenazi, Manor; Faustin, Arline; Leitner, Dominique; Pires, Geoffrey; Kanshin, Evgeny; Drummond, Eleanor; Ueberheide, Beatrix; Wisniewski, Thomas
APOEε4 is the major genetic risk factor for sporadic Alzheimer's disease (AD). Although APOEε4 is known to promote Aβ pathology, recent data also support an effect of APOE polymorphism on phosphorylated Tau (pTau) pathology. To elucidate these potential effects, the pTau interactome was analyzed across APOE genotypes in the frontal cortex of 10 advanced AD cases (n = 5 APOEε3/ε3 and n = 5 APOEε4/ε4), using a combination of anti-pTau pS396/pS404 (PHF1) immunoprecipitation (IP) and mass spectrometry (MS). This proteomic approach was complemented by an analysis of anti-pTau PHF1 and anti-Aβ 4G8 immunohistochemistry, performed in the frontal cortex of 21 advanced AD cases (n = 11 APOEε3/ε3 and n = 10 APOEε4/ε4). Our dataset includes 1130 and 1330 proteins enriched in IPPHF1 samples from APOEε3/ε3 and APOEε4/ε4 groups (fold change ≥ 1.50, IPPHF1 vs IPIgG ctrl). We identified 80 and 68 proteins as probable pTau interactors in APOEε3/ε3 and APOEε4/ε4 groups, respectively (SAINT score ≥ 0.80; false discovery rate (FDR) ≤ 5%). A total of 47/80 proteins were identified as more likely to interact with pTau in APOEε3/ε3 vs APOEε4/ε4 cases. Functional enrichment analyses showed that they were significantly associated with the nucleoplasm compartment and involved in RNA processing. In contrast, 35/68 proteins were identified as more likely to interact with pTau in APOEε4/ε4 vs APOEε3/ε3 cases. They were significantly associated with the synaptic compartment and involved in cellular transport. A characterization of Tau pathology in the frontal cortex showed a higher density of plaque-associated neuritic crowns, made of dystrophic axons and synapses, in APOEε4 carriers. Cerebral amyloid angiopathy was more frequent and severe in APOEε4/ε4 cases. Our study supports an influence of APOE genotype on pTau-subcellular location in AD. These results suggest a facilitation of pTau progression to Aβ-affected brain regions in APOEε4 carriers, paving the way to the identification of new therapeutic targets.
PMCID:11108952
PMID: 38772917
ISSN: 1432-0533
CID: 5654472
CDK-independent role of D-type cyclins in regulating DNA mismatch repair
Rona, Gergely; Miwatani-Minter, Bearach; Zhang, Qingyue; Goldberg, Hailey V; Kerzhnerman, Marc A; Howard, Jesse B; Simoneschi, Daniele; Lane, Ethan; Hobbs, John W; Sassani, Elizabeth; Wang, Andrew A; Keegan, Sarah; Laverty, Daniel J; Piett, Cortt G; Pongor, Lorinc S; Xu, Miranda Li; Andrade, Joshua; Thomas, Anish; Sicinski, Piotr; Askenazi, Manor; Ueberheide, Beatrix; Fenyö, David; Nagel, Zachary D; Pagano, Michele
Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.
PMID: 38458201
ISSN: 1097-4164
CID: 5655612
Endocytic vesicles act as vehicles for glucose uptake in response to growth factor stimulation
Tsutsumi, Ryouhei; Ueberheide, Beatrix; Liang, Feng-Xia; Neel, Benjamin G; Sakai, Ryuichi; Saito, Yoshiro
Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.
PMID: 38565573
ISSN: 2041-1723
CID: 5726222
Proteomics from compartment-specific APEX2 labeling in Mycobacterium tuberculosis reveals Type VII secretion substrates in the cell wall
Jaisinghani, Neetika; Previti, Mary L; Andrade, Joshua; Askenazi, Manor; Ueberheide, Beatrix; Seeliger, Jessica C
The cell wall of mycobacteria plays a key role in interactions with the environment. Its ability to act as a selective filter is crucial to bacterial survival. Proteins in the cell wall enable this function by mediating the import and export of diverse metabolites, from ions to lipids to proteins. Identifying cell wall proteins is an important step in assigning function, especially as many mycobacterial proteins lack functionally characterized homologues. Current methods for protein localization have inherent limitations that reduce accuracy. Here we showed that although chemical labeling of live cells did not exclusively label surface proteins, protein tagging by the engineered peroxidase APEX2 within live Mycobacterium tuberculosis accurately identified the cytosolic and cell wall proteomes. Our data indicate that substrates of the virulence-associated Type VII ESX secretion system are exposed to the periplasm, providing insight into the currently unknown mechanism by which these proteins cross the mycobacterial cell envelope.
PMID: 37967559
ISSN: 2451-9448
CID: 5644222
Using Constellation Pharmacology to Characterize a Novel α-Conotoxin from Conus ateralbus
Neves, Jorge L B; Urcino, Cristoval; Chase, Kevin; Dowell, Cheryl; Hone, Arik J; Morgenstern, David; Chua, Victor M; Ramiro, Iris Bea L; Imperial, Julita S; Leavitt, Lee S; Phan, Jasmine; Fisher, Fernando A; Watkins, Maren; Raghuraman, Shrinivasan; Tun, Jortan O; Ueberheide, Beatrix M; McIntosh, J Michael; Vasconcelos, Vitor; Olivera, Baldomero M; Gajewiak, Joanna
The venom of cone snails has been proven to be a rich source of bioactive peptides that target a variety of ion channels and receptors. α-Conotoxins (αCtx) interact with nicotinic acetylcholine receptors (nAChRs) and are powerful tools for investigating the structure and function of the various nAChR subtypes. By studying how conotoxins interact with nAChRs, we can improve our understanding of these receptors, leading to new insights into neurological diseases associated with nAChRs. Here, we describe the discovery and characterization of a novel conotoxin from Conus ateralbus, αCtx-AtIA, which has an amino acid sequence homologous to the well-described αCtx-PeIA, but with a different selectivity profile towards nAChRs. We tested the synthetic αCtx-AtIA using the calcium imaging-based Constellation Pharmacology assay on mouse DRG neurons and found that αCtx-AtIA significantly inhibited ACh-induced calcium influx in the presence of an α7 positive allosteric modulator, PNU-120596 (PNU). However, αCtx-AtIA did not display any activity in the absence of PNU. These findings were further validated using two-electrode voltage clamp electrophysiology performed on oocytes overexpressing mouse α3β4, α6/α3β4 and α7 nAChRs subtypes. We observed that αCtx-AtIA displayed no or low potency in blocking α3β4 and α6/α3β4 receptors, respectively, but improved potency and selectivity to block α7 nAChRs when compared with αCtx-PeIA. Through the synthesis of two additional analogs of αCtx-AtIA and subsequent characterization using Constellation Pharmacology, we were able to identify residue Trp18 as a major contributor to the activity of the peptide.
PMCID:10971446
PMID: 38535458
ISSN: 1660-3397
CID: 5644892