Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:wangd01

Total Results:

63


Six-Transmembrane Epithelial Antigen of Prostate 1 (STEAP1) Has a Single b Heme and Is Capable of Reducing Metal Ion Complexes and Oxygen

Kim, Kwangsoo; Mitra, Sharmistha; Wu, Gang; Berka, Vladimir; Song, Jinmei; Yu, Ye; Poget, Sebastien; Wang, Da-Neng; Tsai, Ah-Lim; Zhou, Ming
STEAP1, six-transmembrane epithelial antigen of prostate member 1, is strongly expressed in several types of cancer cells, particularly in prostate cancer, and inhibition of its expression reduces the rate of tumor cell proliferation. However, the physiological function of STEAP1 remains unknown. Here for the first time, we purified a mammalian (rabbit) STEAP1 at a milligram level, permitting its high-quality biochemical and biophysical characterizations. We found that STEAP1 likely assembles as a homotrimer and forms a heterotrimer when co-expressed with STEAP2. Each STEAP1 protomer binds one heme prosthetic group that is mainly low-spin with a pair of histidine axial ligands, with small portions of high-spin and P450-type heme. In its ferrous state, STEAP1 is capable of reducing transition metal ion complexes of Fe3+ and Cu2+. Ferrous STEAP1 also reacts readily with O2 through an outer sphere redox mechanism. Kinetics with all three substrates are biphasic with approximately 80 and approximately 20% for the fast and slow phases, respectively, in line with its heme heterogeneity. STEAP1 retained a low level of bound FAD during purification, and the binding equilibrium constant, KD, was approximately 30 muM. These results highlight STEAP as a novel metal reductase and superoxide synthase and establish a solid basis for further research into understanding how STEAP1 activities may affect cancer progression.
PMID: 27792302
ISSN: 1520-4995
CID: 2353122

An aromatic cap seals the substrate binding site in an ECF-type S subunit for riboflavin

Karpowich, Nathan K; Song, Jinmei; Wang, Da-Neng
ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from T. maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein-substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound occluded state, and nonconservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.
PMCID:4975955
PMID: 27312125
ISSN: 1089-8638
CID: 2145272

Rapid Bioinformatic Identification of Thermostabilizing Mutations

Sauer, David B; Karpowich, Nathan K; Song, Jin Mei; Wang, Da-Neng
Ex vivo stability is a valuable protein characteristic but is laborious to improve experimentally. In addition to biopharmaceutical and industrial applications, stable protein is important for biochemical and structural studies. Taking advantage of the large number of available genomic sequences and growth temperature data, we present two bioinformatic methods to identify a limited set of amino acids or positions that likely underlie thermostability. Because these methods allow thousands of homologs to be examined in silico, they have the advantage of providing both speed and statistical power. Using these methods, we introduced, via mutation, amino acids from thermoadapted homologs into an exemplar mesophilic membrane protein, and demonstrated significantly increased thermostability while preserving protein activity.
PMCID:4601007
PMID: 26445442
ISSN: 1542-0086
CID: 1793182

ATP binding drives substrate capture in an ECF transporter by a release-and-catch mechanism

Karpowich, Nathan K; Song, Jin Mei; Cocco, Nicolette; Wang, Da-Neng
ECF transporters are a family of active transporters for vitamins. They are composed of four subunits: a membrane-embedded substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT) and two ATP-binding-cassette ATPases (EcfA and EcfA'). We have investigated the mechanism of the ECF transporter for riboflavin from the pathogen Listeria monocytogenes, LmECF-RibU. Using structural and biochemical approaches, we found that ATP binding to the EcfAA' ATPases drives a conformational change that dissociates the S subunit from the EcfAA'T ECF module. Upon release from the ECF module, the RibU S subunit then binds the riboflavin transport substrate. We also find that S subunits for distinct substrates compete for the ATP-bound state of the ECF module. Our results explain how ECF transporters capture the transport substrate and reproduce the in vivo observations on S-subunit competition for which the family was named.
PMCID:4634891
PMID: 26052893
ISSN: 1545-9985
CID: 1626102

Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae

Mulligan, Christopher; Fitzgerald, Gabriel A; Wang, Da-Neng; Mindell, Joseph A
The SLC13 transporter family, whose members play key physiological roles in the regulation of fatty acid synthesis, adiposity, insulin resistance, and other processes, catalyzes the transport of Krebs cycle intermediates and sulfate across the plasma membrane of mammalian cells. SLC13 transporters are part of the divalent anion:Na(+) symporter (DASS) family that includes several well-characterized bacterial members. Despite sharing significant sequence similarity, the functional characteristics of DASS family members differ with regard to their substrate and coupling ion dependence. The publication of a high resolution structure of dimer VcINDY, a bacterial DASS family member, provides crucial structural insight into this transporter family. However, marrying this structural insight to the current functional understanding of this family also demands a comprehensive analysis of the transporter's functional properties. To this end, we purified VcINDY, reconstituted it into liposomes, and determined its basic functional characteristics. Our data demonstrate that VcINDY is a high affinity, Na(+)-dependent transporter with a preference for C4- and C5-dicarboxylates. Transport of the model substrate, succinate, is highly pH dependent, consistent with VcINDY strongly preferring the substrate's dianionic form. VcINDY transport is electrogenic with succinate coupled to the transport of three or more Na(+) ions. In contrast to succinate, citrate, bound in the VcINDY crystal structure (in an inward-facing conformation), seems to interact only weakly with the transporter in vitro. These transport properties together provide a functional framework for future experimental and computational examinations of the VcINDY transport mechanism.
PMCID:4035743
PMID: 24821967
ISSN: 0022-1295
CID: 1032482

Science Communication: Quality at Stake [Letter]

Loew, Leslie M.; Wang, Da-Neng
ISI:000327857900017
ISSN: 0036-8075
CID: 700992

Ion selectivity and gating mechanisms of FNT channels

Waight, Andrew B; Czyzewski, Bryan K; Wang, Da-Neng
The phospholipid bilayer has evolved to be a protective and selective barrier by which the cell maintains high concentrations of life sustaining organic and inorganic material. As gatekeepers responsible for an immense amount of bidirectional chemical traffic between the cytoplasm and extracellular milieu, ion channels have been studied in detail since their postulated existence nearly three-quarters of a century ago. Over the past fifteen years, we have begun to understand how selective permeability can be achieved for both cationic and anionic ions. Our mechanistic knowledge has expanded recently with studies of a large family of anion channels, the Formate Nitrite Transport (FNT) family. This family has proven amenable to structural studies at a resolution high enough to reveal intimate details of ion selectivity and gating. With five representative members having yielded a total of 15 crystal structures, this family represents one of the richest sources of structural information for anion channels.
PMCID:3737415
PMID: 23773802
ISSN: 0959-440x
CID: 426092

Assembly and mechanism of a group II ECF transporter

Karpowich, Nathan K; Wang, Da-Neng
Energy-coupling factor (ECF) transporters are a recently discovered family of primary active transporters for micronutrients and vitamins, such as biotin, thiamine, and riboflavin. Found exclusively in archaea and bacteria, including the human pathogens Listeria, Streptococcus, and Staphylococcus, ECF transporters may be the only means of vitamin acquisition in these organisms. The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, whereby both systems share two homologous ATPase subunits (A and A'), a high affinity substrate-binding subunit (S), and a transmembrane coupling subunit (T). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between the two transporter families. Moreover, the subunit stoichiometry of ECF transporters is controversial, and the detailed molecular interactions between subunits and the conformational changes during substrate translocation are unknown. We have characterized the ECF transporters from Thermotoga maritima and Streptococcus thermophilus. Our data suggests a subunit stoichiometry of 2S:2T:1A:1A' and that S subunits for different substrates can be incorporated into the same transporter complex simultaneously. In the first crystal structure of the A-A' heterodimer, each subunit contains a novel motif called the Q-helix that plays a key role in subunit coupling with the T subunits. Taken together, these findings suggest a mechanism for coupling ATP binding and hydrolysis to transmembrane transport by ECF transporters.
PMCID:3574940
PMID: 23359690
ISSN: 0027-8424
CID: 220862

Benjamin Franklin, Philadelphia's Favorite Son, was a Membrane Biophysicist

Wang, Da-Neng; Stieglitz, Heather; Marden, Jennifer; Tamm, Lukas K
Benjamin Franklin, mostly known for his participation in writing The Declaration of Independence and work on electricity, was also one of the first scientists to seek to understand the properties of oil monolayers on water surfaces. During one of his many voyages across the Atlantic Ocean, Franklin observed that oil had a calming effect on waves when poured into rough ocean waters. Though at first taking a backseat to many of his other scientific and political endeavors, Franklin went on to experiment with oil, spreading monomolecular films on various bodies of water, and ultimately devised a concept of particle repulsion that is indirectly related to the hydrophobic effect. His early observations inspired others to measure the dimensions of oil monolayers, which eventually led to the formulation of the contemporary lipid bilayer model of the cell membrane.
PMCID:3552257
PMID: 23442850
ISSN: 0006-3495
CID: 231242

Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter

Mancusso, Romina; Gregorio, G Glenn; Liu, Qun; Wang, Da-Neng
In human cells, cytosolic citrate is a chief precursor for the synthesis of fatty acids, triacylglycerols, cholesterol and low-density lipoprotein. Cytosolic citrate further regulates the energy balance of the cell by activating the fatty-acid-synthesis pathway while downregulating both the glycolysis and fatty-acid beta-oxidation pathways. The rate of fatty-acid synthesis in liver and adipose cells, the two main tissue types for such synthesis, correlates directly with the concentration of citrate in the cytosol, with the cytosolic citrate concentration partially depending on direct import across the plasma membrane through the Na(+)-dependent citrate transporter (NaCT). Mutations of the homologous fly gene (Indy; I'm not dead yet) result in reduced fat storage through calorie restriction. More recently, Nact (also known as Slc13a5)-knockout mice have been found to have increased hepatic mitochondrial biogenesis, higher lipid oxidation and energy expenditure, and reduced lipogenesis, which taken together protect the mice from obesity and insulin resistance. To understand the transport mechanism of NaCT and INDY proteins, here we report the 3.2 A crystal structure of a bacterial INDY homologue. One citrate molecule and one sodium ion are bound per protein, and their binding sites are defined by conserved amino acid motifs, forming the structural basis for understanding the specificity of the transporter. Comparison of the structures of the two symmetrical halves of the transporter suggests conformational changes that propel substrate translocation.
PMCID:3617922
PMID: 23086149
ISSN: 0028-0836
CID: 184922