Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:yangh07

Total Results:

14


Kinetic analysis of Pseudomonas aeruginosa arginine deiminase mutants and alternate substrates provides insight into structural determinants of function

Lu, Xuefeng; Li, Ling; Wu, Rui; Feng, Xiaohua; Li, Zhimin; Yang, Heyi; Wang, Canhui; Guo, Hua; Galkin, Andrey; Herzberg, Osnat; Mariano, Patrick S; Martin, Brian M; Dunaway-Mariano, Debra
L-Arginine deiminase from Pseudomonas aeruginosa (PaADI) catalyzes the hydrolysis of arginine to citrulline and ammonia. PaADI belongs to the guanidino group-modifying enzyme superfamily (GMSF), which conserves backbone fold and a Cys-, His-, and Asp-based catalytic core. In this paper the contributions made by the PaADI core residues Cys406, His278, and Asp166 and the contribution from the neighboring Asp280 (conserved in most but not all GMSF members) to catalysis of the formation and hydrolysis of the Cys406-alkyluronium intermediate were accessed by kinetic analysis of site-directed mutants. In addition, solution hydrolysis in a chemical model of the S-alkylthiouronium intermediate was examined to reveal the importance of general base catalysis in the enzymatic reaction. Substitutions of the active site gating residue Arg401, the l-arginine C(alpha)NH(3)(+)(COO(-)) binding residues, Arg185, Arg243, and Asn160, or the His278 hydrogen bond partner, Glu224, were found to cause dramatic reductions in the enzyme turnover rate. These results are interpreted to suggest that electrostatic interactions play a dominant role in PaADI catalysis. Structural variations observed in P. aeruginosa GMSF enzymes PaADI, agmatine deiminase (PaAgDI), and N(omega),N(omega)-dimethylarginine dimethylaminohydrolase (PaDDAH) indicate an early divergence of the encoding genes. Arginine analogues that are known substrates for PaAgDI and PaDDAH were tested with PaADI to define clear boundaries of biochemical function in the three hydrolases. The conservation of a catalytic core associated with the common chemical function and the divergence of substrate-binding residues (as well as one key catalytic residue) to expand the substrate range provide insight into the evolution of the catalysts that form the GMSF.
PMID: 16430212
ISSN: 0006-2960
CID: 1446812

Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion

Sun, Jin-Peng; Wang, Wei-Qing; Yang, Heyi; Liu, Sijiu; Liang, Fubo; Fedorov, Alexander A; Almo, Steven C; Zhang, Zhong-Yin
The PRL (phosphatase of regenerating liver) phosphatases constitute a novel class of small, prenylated phosphatases that are implicated in promoting cell growth, differentiation, and tumor invasion, and represent attractive targets for anticancer therapy. Here we describe the crystal structures of native PRL-1 as well as the catalytically inactive mutant PRL-1/C104S in complex with sulfate. PRL-1 exists as a trimer in the crystalline state, burying 1140 A2 of accessible surface area at each dimer interface. Trimerization creates a large, bipartite membrane-binding surface in which the exposed C-terminal basic residues could cooperate with the adjacent prenylation group to anchor PRL-1 on the acidic inner membrane. Structural and kinetic analyses place PRL-1 in the family of dual specificity phopsphatases with closest structural similarity to the Cdc14 phosphatase and provide a molecular basis for catalytic activation of the PRL phosphatases. Finally, native PRL-1 is crystallized in an oxidized form in which a disulfide is formed between the active site Cys104 and a neighboring residue Cys49, which blocks both substrate binding and catalysis. Biochemical studies in solution and in the cell support a potential regulatory role of this intramolecular disulfide bond formation in response to reactive oxygen species such as H2O2.
PMID: 16142898
ISSN: 0006-2960
CID: 1446822

Design, construction, and intracellular activation of an intramolecularly self-silenced signal transduction inhibitor

Lee, Seung-Yub; Liang, Fubo; Guo, Xiao-Ling; Xie, Laiping; Cahill, Sean M; Blumenstein, Michael; Yang, Heyi; Lawrence, David S; Zhang, Zhong-Yin
PMID: 15937885
ISSN: 1433-7851
CID: 1446832

Multiplex single-nucleotide polymorphism genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Yang, Heyi; Wang, Haijian; Wang, Jie; Cai, Yun; Zhou, Gangqiao; He, FuChu; Qian, Xiaohong
A robust high-throughput single-nucleotide polymorphism (SNP) genotyping method is reported, which applies allele-specific extension to achieve allelic discrimination and uses matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to measure the natural molecular weight difference of oligonucleotides for determination of the base in a single-nucleotide polymorphic location. Tenfold PCR is performed successfully by carefully designing the primers and adjusting the conditions of PCR. In addition, two ways used for PCR product purification are compared and the matrix used in mass spectrometry for high-throughput oligonucleotide analysis is evaluated. The result here shows that the method is very effective and suitable for high-throughput genotyping of SNPs.
PMID: 12633602
ISSN: 0003-2697
CID: 1446842