Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:at570

Total Results:

208


Graph Drawing-based Dimensionality Reduction to Identify Hidden Communities in Single-Cell Sequencing Spatial Representation [PrePrint]

Khodadadi-Jamayran, Alireza; Tsirigos, Aristotelis
ORIGINAL:0014653
ISSN: 2692-8205
CID: 4474782

Context-Dependent Requirement of Euchromatic Histone Methyltransferase Activity during Reprogramming to Pluripotency

Vidal, Simon E; Polyzos, Alexander; Chatterjee, Kaushiki; Ee, Ly-Sha; Swanzey, Emily; Morales-Valencia, Jorge; Wang, Hongsu; Parikh, Chaitanya N; Amlani, Bhishma; Tu, Shengjiang; Gong, Yixiao; Snetkova, Valentina; Skok, Jane A; Tsirigos, Aristotelis; Kim, Sangyong; Apostolou, Effie; Stadtfeld, Matthias
Methylation of histone 3 at lysine 9 (H3K9) constitutes a roadblock for cellular reprogramming. Interference with methyltransferases or activation of demethylases by the cofactor ascorbic acid (AA) facilitates the derivation of induced pluripotent stem cells (iPSCs), but possible interactions between specific methyltransferases and AA treatment remain insufficiently explored. We show that chemical inhibition of the methyltransferases EHMT1 and EHMT2 counteracts iPSC formation in an enhanced reprogramming system in the presence of AA, an effect that is dependent on EHMT1. EHMT inhibition during enhanced reprogramming is associated with rapid loss of H3K9 dimethylation, inefficient downregulation of somatic genes, and failed mesenchymal-to-epithelial transition. Furthermore, transient EHMT inhibition during reprogramming yields iPSCs that fail to efficiently give rise to viable mice upon blastocyst injection. Our observations establish novel functions of H3K9 methyltransferases and suggest that a functional balance between AA-stimulated enzymes and EHMTs supports efficient and less error-prone iPSC reprogramming to pluripotency.
PMID: 32976761
ISSN: 2213-6711
CID: 4606132

Muscle progenitor specification and myogenic differentiation are associated with changes in chromatin topology

Zhang, Nan; Mendieta-Esteban, Julen; Magli, Alessandro; Lilja, Karin C; Perlingeiro, Rita C R; Marti-Renom, Marc A; Tsirigos, Aristotelis; Dynlacht, Brian David
Using Hi-C, promoter-capture Hi-C (pCHi-C), and other genome-wide approaches in skeletal muscle progenitors that inducibly express a master transcription factor, Pax7, we systematically characterize at high-resolution the spatio-temporal re-organization of compartments and promoter-anchored interactions as a consequence of myogenic commitment and differentiation. We identify key promoter-enhancer interaction motifs, namely, cliques and networks, and interactions that are dependent on Pax7 binding. Remarkably, Pax7 binds to a majority of super-enhancers, and together with a cadre of interacting transcription factors, assembles feed-forward regulatory loops. During differentiation, epigenetic memory and persistent looping are maintained at a subset of Pax7 enhancers in the absence of Pax7. We also identify and functionally validate a previously uncharacterized Pax7-bound enhancer hub that regulates the essential myosin heavy chain cluster during skeletal muscle cell differentiation. Our studies lay the groundwork for understanding the role of Pax7 in orchestrating changes in the three-dimensional chromatin conformation in muscle progenitors.
PMID: 33277476
ISSN: 2041-1723
CID: 4702792

Evolution of the epigenetic landscape in childhood B acute lymphoblastic leukemia and its role in drug resistance

Saint Fleur-Lominy, Shella; Evensen, Nikki A; Bhatla, Teena; Sethia, Gunjan; Narang, Sonali; Choi, Jun H; Ma, Xiaotu; Yang, Jun J; Kelly, Stephen; Raetz, Elizabeth; Harvey, Richard C; Willman, Cheryl; Loh, Mignon L; Hunger, Stephen P; Brown, Patrick A; Getz, Kylie M; Meydan, Cem; Mason, Christopher E; Tsirigos, Aristotelis; Carroll, William L
Although B cell acute lymphoblastic leukemia (ALL) is the most common malignancy in children and while highly curable, it remains a leading cause of cancer-related mortality. The outgrowth of tumor subclones carrying mutations in genes responsible for resistance to therapy has led to a Darwinian model of clonal selection. Previous work has indicated that alterations in the epigenome might contribute to clonal selection yet the extent to which the chromatin state is altered under the selective pressures of therapy is unknown. To address this, we performed chromatin immunoprecipitation, gene expression analysis, and enhanced reduced representation bisulfite sequencing on a cohort of paired diagnosis and relapse samples from individual patients who all but one relapsed within 36 months of initial diagnosis. The chromatin state at diagnosis varied widely among patients: while the majority of peaks remained stable between diagnosis and relapse, yet a significant fraction were either lost or newly gained with some patients showing few differences and others showing massive changes of the epigenetic state. Evolution of the epigenome was associated with pathways previously linked to therapy resistance as well as novel candidate pathways through alterations in pyrimidine biosynthesis and downregulation of polycomb repressive complex 2 targets. Three novel, relapse-specific super-enhancers were shared by a majority of patients including one associated with S100A8, the top upregulated gene seen at relapse in childhood B-ALL. Overall, our results support a role of the epigenome in clonal evolution and uncover new candidate pathways associated with relapse.
PMID: 33067268
ISSN: 1538-7445
CID: 4641772

Dissecting the immunosuppressive tumor microenvironments in Glioblastoma-on-a-Chip for optimized PD-1 immunotherapy

Cui, Xin; Ma, Chao; Vasudevaraja, Varshini; Serrano, Jonathan; Tong, Jie; Peng, Yansong; Delorenzo, Michael; Shen, Guomiao; Frenster, Joshua; Morales, Renee-Tyler Tan; Qian, Weiyi; Tsirigos, Aristotelis; Chi, Andrew S; Jain, Rajan; Kurz, Sylvia C; Sulman, Erik P; Placantonakis, Dimitris G; Snuderl, Matija; Chen, Weiqiang
Programmed cell death protein-1 (PD-1) checkpoint immunotherapy efficacy remains unpredictable in glioblastoma (GBM) patients due to the genetic heterogeneity and immunosuppressive tumor microenvironments. Here, we report a microfluidics-based, patient-specific 'GBM-on-a-Chip' microphysiological system to dissect the heterogeneity of immunosuppressive tumor microenvironments and optimize anti-PD-1 immunotherapy for different GBM subtypes. Our clinical and experimental analyses demonstrated that molecularly distinct GBM subtypes have distinct epigenetic and immune signatures that may lead to different immunosuppressive mechanisms. The real-time analysis in GBM-on-a-Chip showed that mesenchymal GBM niche attracted low number of allogeneic CD154+CD8+ T-cells but abundant CD163+ tumor-associated macrophages (TAMs), and expressed elevated PD-1/PD-L1 immune checkpoints and TGF-β1, IL-10, and CSF-1 cytokines compared to proneural GBM. To enhance PD-1 inhibitor nivolumab efficacy, we co-administered a CSF-1R inhibitor BLZ945 to ablate CD163+ M2-TAMs and strengthened CD154+CD8+ T-cell functionality and GBM apoptosis on-chip. Our ex vivo patient-specific GBM-on-a-Chip provides an avenue for a personalized screening of immunotherapies for GBM patients.
PMID: 32909947
ISSN: 2050-084x
CID: 4589392

Posttranslational regulation of the exon skipping machinery controls aberrant splicing in leukemia

Zhou, Yalu; Han, Cuijuan; Wang, Eric; Lorch, Adam H; Serafin, Valentina; Cho, Byoung-Kyu; Guttierrez Diaz, Blanca T; Calvo, Julien; Fang, Celestia; Khodadadi-Jamayran, Alireza; Tabaglio, Tommaso; Marier, Christian; Kuchmiy, Anna; Sun, Limin; Yacu, George; Filip, Szymon K; Jin, Qi; Takahashi, Yoh-Hei; Amici, David R; Rendleman, Emily J; Rawat, Radhika; Bresolin, Silvia; Paganin, Maddalena; Zhang, Cheng; Li, Hu; Kandela, Irawati; Politanska, Yuliya; Abdala-Valencia, Hiam; Mendillo, Marc L; Zhu, Ping; Palhais, Bruno; Van Vlierberghe, Pieter; Taghon, Tom; Aifantis, Iannis; Goo, Young Ah; Guccione, Ernesto; Heguy, Adriana; Tsirigos, Aristotelis; Wee, Keng Boon; Mishra, Rama K; Pflumio, Francoise; Accordi, Benedetta; Basso, Giuseppe; Ntziachristos, Panagiotis
Splicing alterations are common in disease, such as cancer, where mutations in splicing factor genes are frequently responsible for aberrant splicing. Here we present an alternative mechanism for splicing regulation in T cell acute lymphoblastic leukemia (T-ALL), that involves posttranslational stabilization of the splicing machinery via deubiquitination. We demonstrate there are extensive exon skipping changes in disease affecting proteasomal subunits, cell cycle regulators, and the RNA machinery. We present that the serine/arginine-rich splicing factors (SRSF), controlling exon skipping, are critical for leukemia cell survival. The ubiquitin-specific peptidase 7 (USP7) regulates SRSF6 protein levels via active deubiquitination and USP7 inhibition alters the exon skipping pattern and blocks T-ALL growth. The splicing inhibitor H3B-8800 affects splicing of proteasomal transcripts and proteasome activity and acts synergistically with proteasome inhibitors in inhibiting T-ALL growth. Our study provides the proof-of-principle for regulation of splicing factors via deubiquitination and suggests new therapeutic modalities in T-ALL.
PMID: 32444465
ISSN: 2159-8290
CID: 4447172

Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis

Moro, Loredana; Simoneschi, Daniele; Kurz, Emma; Arbini, Arnaldo A; Jang, Shaowen; Guaragnella, Nicoletta; Giannattasio, Sergio; Wang, Wei; Chen, Yu-An; Pires, Geoffrey; Dang, Andrew; Hernandez, Elizabeth; Kapur, Payal; Mishra, Ankita; Tsirigos, Aristotelis; Miller, George; Hsieh, Jer-Tsong; Pagano, Michele
Epigenetic plasticity is a pivotal factor that drives metastasis. Here, we show that the promoter of the gene that encodes the ubiquitin ligase subunit FBXL7 is hypermethylated in advanced prostate and pancreatic cancers, correlating with decreased FBXL7 mRNA and protein levels. Low FBXL7 mRNA levels are predictive of poor survival in patients with pancreatic and prostatic cancers. FBXL7 mediates the ubiquitylation and proteasomal degradation of active c-SRC after its phosphorylation at Ser 104. The DNA-demethylating agent decitabine recovers FBXL7 expression and limits epithelial-to-mesenchymal transition and cell invasion in a c-SRC-dependent manner. In vivo, FBXL7-depleted cancer cells form tumours with a high metastatic burden. Silencing of c-SRC or treatment with the c-SRC inhibitor dasatinib together with FBXL7 depletion prevents metastases. Furthermore, decitabine reduces metastases derived from prostate and pancreatic cancer cells in a FBXL7-dependent manner. Collectively, this research implicates FBXL7 as a metastasis-suppressor gene and suggests therapeutic strategies to counteract metastatic dissemination of pancreatic and prostatic cancer cells.
PMID: 32839549
ISSN: 1476-4679
CID: 4574162

The NSD2 p.E1099K Mutation is Enriched at Relapse and Confers Drug Resistance in a Cell Context Dependent Manner in Pediatric Acute Lymphoblastic Leukemia

Pierro, Joanna; Saliba, Jason; Narang, Sonali; Sethia, Gunjan; Saint Fleur-Lominy, Shella; Chowdhury, Ashfiyah; Qualls, Anita; Fay, Hannah; Kilberg, Harrison L; Moriyama, Takaya; Fuller, Tori J; Teachey, David T; Schmiegelow, Kjeld; Yang, Jun J; Loh, Mignon L; Brown, Patrick A; Zhang, Jinghui; Ma, Xiaotu; Tsirigos, Aristotelis; Evensen, Nikki A; Carroll, William L
The NSD2 p.E1099K (EK) mutation is observed in 10% of acute lymphoblastic leukemia (ALL) samples with enrichment at relapse indicating a role in clonal evolution and drug resistance. To discover mechanisms that mediate clonal expansion, we engineered B-ALL cell lines (Reh, 697) to overexpress wildtype (WT) and EK NSD2, but observed no differences in proliferation, clonal growth, or chemosensitivity. To address whether NSD2 EK acts collaboratively with other pathways, we used shRNAs to knockdown expression of NSD2 in B-ALL cell lines heterozygous for NSD2 EK (RS4;11, RCH-ACV, SEM). Knockdown resulted in decreased proliferation in all lines, decreased clonal growth in RCH-ACV, and increased sensitivity to cytotoxic chemotherapeutic agents, although the pattern of drug sensitivity varied among cell lines implying that the oncogenic properties of NSD2 mutations are likely cell context specific and rely on cooperative pathways. Knockdown of both Type II and REIIBP EK isoforms had a greater impact than knockdown of Type II alone, suggesting that both SET containing EK isoforms contribute to phenotypic changes driving relapse. Furthermore, in vivo models using both cell lines and patient samples revealed dramatically enhanced proliferation of NSD2 EK compared to WT and reduced sensitivity to 6-mercaptopurine in the relapse sample relative to diagnosis. Finally, EK-mediated changes in chromatin state and transcriptional output differed dramatically among cell lines further supporting a cell context specific role of NSD2 EK. These results demonstrate a unique role of NSD2 EK in mediating clonal fitness through pleiotropic mechanisms dependent on the genetic and epigenetic landscape. Implications: NSD2 p.E1099K mutation leads to drug resistance and a clonal advantage in childhood B-ALL.
PMID: 32332049
ISSN: 1557-3125
CID: 4402512

Deep learning links histology, molecular signatures and prognosis in cancer [Comment]

Coudray, Nicolas; Tsirigos, Aristotelis
PMID: 35122048
ISSN: 2662-1347
CID: 5204202

Extensive Remodeling of the Immune Microenvironment in B Cell Acute Lymphoblastic Leukemia

Witkowski, Matthew T; Dolgalev, Igor; Evensen, Nikki A; Ma, Chao; Chambers, Tiffany; Roberts, Kathryn G; Sreeram, Sheetal; Dai, Yuling; Tikhonova, Anastasia N; Lasry, Audrey; Qu, Chunxu; Pei, Deqing; Cheng, Cheng; Robbins, Gabriel A; Pierro, Joanna; Selvaraj, Shanmugapriya; Mezzano, Valeria; Daves, Marla; Lupo, Philip J; Scheurer, Michael E; Loomis, Cynthia A; Mullighan, Charles G; Chen, Weiqiang; Rabin, Karen R; Tsirigos, Aristotelis; Carroll, William L; Aifantis, Iannis
A subset of B cell acute lymphoblastic leukemia (B-ALL) patients will relapse and succumb to therapy-resistant disease. The bone marrow microenvironment may support B-ALL progression and treatment evasion. Utilizing single-cell approaches, we demonstrate B-ALL bone marrow immune microenvironment remodeling upon disease initiation and subsequent re-emergence during conventional chemotherapy. We uncover a role for non-classical monocytes in B-ALL survival, and demonstrate monocyte abundance at B-ALL diagnosis is predictive of pediatric and adult B-ALL patient survival. We show that human B-ALL blasts alter a vascularized microenvironment promoting monocytic differentiation, while depleting leukemia-associated monocytes in B-ALL animal models prolongs disease remission in vivo. Our profiling of the B-ALL immune microenvironment identifies extrinsic regulators of B-ALL survival supporting new immune-based therapeutic approaches for high-risk B-ALL treatment.
PMID: 32470390
ISSN: 1878-3686
CID: 4452012