Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:chaom01

Total Results:

353


Regulation of trafficking of activated TrkA is critical for NGF-mediated functions

Yu, Tao; Calvo, Laura; Anta, Begona; Lopez-Benito, Saray; Southon, Eileen; Chao, Moses V; Tessarollo, Lino; Arevalo, Juan C
Upon activation by nerve growth factor (NGF), TrkA is internalized, trafficked and sorted through different endosomal compartments. Proper TrkA trafficking and sorting are crucial events as alteration of these processes hinders NGF-mediated functions. However, it is not fully known which proteins are involved in the trafficking and sorting of TrkA. Here we report that Nedd4-2 regulates the trafficking of TrkA and NGF functions in sensory neurons. Depletion of Nedd4-2 disrupts the correct sorting of activated TrkA at the early and late endosome stages, resulting in an accumulation of TrkA in these compartments and, as a result of the reduced trafficking to the degradative pathway, TrkA is either reverted to the cell surface through the recycling pathway or retrogradely transported to the cell body. In addition, Nedd4-2 depletion enhances TrkA signaling and the survival of NGF-dependent dorsal root ganglion neurons, but not those of brain-derived neurotrophic factor-dependent neurons. Furthermore, neurons from a knock-in mouse expressing a TrkA mutant that does not bind Nedd4-2 protein exhibit increased NGF-mediated signaling and cell survival. Our data indicate that TrkA trafficking and sorting are regulated by Nedd4-2 protein
PMCID:3547592
PMID: 21199218
ISSN: 1600-0854
CID: 133179

Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling

Vaegter, Christian B; Jansen, Pernille; Fjorback, Anja W; Glerup, Simon; Skeldal, Sune; Kjolby, Mads; Richner, Mette; Erdmann, Bettina; Nyengaard, Jens R; Tessarollo, Lino; Lewin, Gary R; Willnow, Thomas E; Chao, Moses V; Nykjaer, Anders
Binding of target-derived neurotrophins to Trk receptors at nerve terminals is required to stimulate neuronal survival, differentiation, innervation and synaptic plasticity. The distance between the soma and nerve terminal is great, making efficient anterograde Trk transport critical for Trk synaptic translocation and signaling. The mechanism responsible for this trafficking remains poorly understood. Here we show that the sorting receptor sortilin interacts with TrkA, TrkB and TrkC and enables their anterograde axonal transport, thereby enhancing neurotrophin signaling. Cultured DRG neurons lacking sortilin showed blunted MAP kinase signaling and reduced neurite outgrowth upon stimulation with NGF. Moreover, deficiency for sortilin markedly aggravated TrkA, TrkB and TrkC phenotypes present in p75(NTR) knockouts, and resulted in increased embryonic lethality and sympathetic neuropathy in mice heterozygous for TrkA. Our findings demonstrate a role for sortilin as an anterograde trafficking receptor for Trk and a positive modulator of neurotrophin-induced neuronal survival
PMCID:3808973
PMID: 21102451
ISSN: 1546-1726
CID: 122282

Huntingtin mediates dendritic transport of beta-actin mRNA in rat neurons

Ma, Bin; Savas, Jeffrey N; Yu, Man-Shan; Culver, Brady P; Chao, Moses V; Tanese, Naoko
Transport of mRNAs to diverse neuronal locations via RNA granules serves an important function in regulating protein synthesis within restricted sub-cellular domains. We recently detected the Huntington's disease protein huntingtin (Htt) in dendritic RNA granules; however, the functional significance of this localization is not known. Here we report that Htt and the huntingtin-associated protein 1 (HAP1) are co-localized with the microtubule motor proteins, the KIF5A kinesin and dynein, during dendritic transport of beta-actin mRNA. Live cell imaging demonstrated that beta-actin mRNA is associated with Htt, HAP1, and dynein intermediate chain in cultured neurons. Reduction in the levels of Htt, HAP1, KIF5A, and dynein heavy chain by lentiviral-based shRNAs resulted in a reduction in the transport of beta-actin mRNA. These findings support a role for Htt in participating in the mRNA transport machinery that also contains HAP1, KIF5A, and dynein.
PMCID:3216621
PMID: 22355657
ISSN: 2045-2322
CID: 166786

The ankyrin repeat-rich membrane spanning (ARMS)/Kidins220 scaffold protein is regulated by activity-dependent calpain proteolysis and modulates synaptic plasticity

Wu, Synphen H; Arevalo, Juan Carlos; Neubrand, Veronika E; Zhang, Hong; Arancio, Ottavio; Chao, Moses V
The expression of forms of synaptic plasticity, such as the phenomenon of long-term potentiation, requires the activity-dependent regulation of synaptic proteins and synapse composition. Here we show that ARMS (ankyrin repeat-rich membrane spanning protein)/Kidins220, a transmembrane scaffold molecule and BDNF TrkB substrate, is significantly reduced in hippocampal neurons after potassium chloride depolarization. The activity-dependent proteolysis of ARMS/Kidins220 was found to occur through calpain, a calcium-activated protease. Moreover, hippocampal long-term potentiation in ARMS/Kidins220(+/-) mice was enhanced, and inhibition of calpain in these mice reversed these effects. These results provide an explanation for a role for the ARMS/Kidins220 protein in synaptic plasticity events and suggest that the levels of ARMS/Kidins220 can be regulated by neuronal activity and calpain action to influence synaptic function
PMCID:3003345
PMID: 20943655
ISSN: 1083-351x
CID: 117336

Regulation of inhibitory neurotransmission by the scaffolding protein ankyrin repeat-rich membrane spanning/kinase D-interacting substrate of 220 kDa

Sutachan, Jhon-Jairo; Chao, Moses V; Ninan, Ipe
Scaffolding proteins play a critical role in the proper development and function of neural circuits. In contrast to the case for excitatory circuits, in which the role of several scaffolding proteins has been characterized, less is known about the scaffolding proteins that regulate inhibitory neurotransmission. The ankyrin repeat-rich membrane spanning (ARMS)/kinase D-interacting substrate of 220 kDa (Kidins220) scaffolding protein is expressed during the establishment of gamma-aminobutyric acid (GABA) neurotransmission and is highly regulated by activity. To evaluate whether ARMS/Kidins220 expression affects GABAergic neurotransmission, we modified the ARMS/Kidins220 levels during the period of its maximum expression in culture (DIV 1-10). Whereas a decrease in ARMS/Kidins220 levels suppressed GABAergic neurotransmission, overexpression of ARMS/Kidins220 produced an increase in GABAergic neurotransmission in hippocampal neurons. In addition, we found that ARMS/Kidins220 regulates GABAergic neurotransmission by a presynaptic mechanism. Our results suggest that the ARMS/Kidins220 scaffold protein plays a critical role in the regulation of inhibitory transmission in hippocampal neurons. (c) 2010 Wiley-Liss, Inc
PMID: 20936698
ISSN: 1097-4547
CID: 114048

Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression

Ginsberg, Stephen D; Alldred, Melissa J; Counts, Scott E; Cataldo, Anne M; Neve, Rachael L; Jiang, Ying; Wuu, Joanne; Chao, Moses V; Mufson, Elliott J; Nixon, Ralph A; Che, Shaoli
BACKGROUND: Endocytic dysfunction and neurotrophin signaling deficits may underlie the selective vulnerability of hippocampal neurons during the progression of Alzheimer's disease (AD), although there is little direct in vivo and biochemical evidence to support this hypothesis. METHODS: Microarray analysis of hippocampal CA1 pyramidal neurons acquired via laser capture microdissection was performed using postmortem brain tissue. Validation was achieved using real-time quantitative polymerase chain reaction and immunoblot analysis. Mechanistic studies were performed using human fibroblasts subjected to overexpression with viral vectors or knockdown via small interference RNA. RESULTS: Expression levels of genes regulating early endosomes (rab5) and late endosomes (rab7) are selectively upregulated in homogeneous populations of CA1 neurons from individuals with mild cognitive impairment and AD. The levels of these genes are selectively increased as antemortem measures of cognition decline during AD progression. Hippocampal quantitative polymerase chain reaction and immunoblot analyses confirmed increased levels of these transcripts and their respective protein products. Elevation of select rab GTPases regulating endocytosis paralleled the downregulation of genes encoding the neurotrophin receptors TrkB and TrkC. Overexpression of rab5 in cells suppressed TrkB expression, whereas knockdown of TrkB expression did not alter rab5 levels, suggesting that TrkB downregulation is a consequence of endosomal dysfunction associated with elevated rab5 levels in early AD. CONCLUSIONS: These data support the hypothesis that neuronal endosomal dysfunction is associated with preclinical AD. Increased endocytic pathway activity, driven by elevated rab GTPase expression, may result in long-term deficits in hippocampal neurotrophic signaling and represent a key pathogenic mechanism underlying AD progression
PMCID:2965820
PMID: 20655510
ISSN: 1873-2402
CID: 114169

The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching

Jeanneteau, Freddy; Deinhardt, Katrin; Miyoshi, Goichi; Bennett, Anton M; Chao, Moses V
The refinement of neural circuits during development depends on a dynamic process of branching of axons and dendrites that leads to synapse formation and connectivity. The neurotrophin brain-derived neurotrophic factor (BDNF) is essential for the outgrowth and activity-dependent remodeling of axonal arbors in vivo. However, the mechanisms that translate extracellular signals into the formation of axonal branches are incompletely understood. We found that MAP kinase phosphatase-1 (MKP-1) controls axon branching. MKP-1 expression induced by BDNF signaling caused spatiotemporal deactivation of c-jun N-terminal kinase (JNK), which reduced the phosphorylation of JNK substrates that destabilize microtubules. Indeed, neurons from mkp-1 null mice could not produce axon branches in response to BDNF. Our results identify a signaling mechanism that regulates axonal branching and provide a framework for studying the molecular mechanisms of innervation and axonal remodeling under normal and pathological conditions
PMCID:2971689
PMID: 20935641
ISSN: 1546-1726
CID: 140038

Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons

Camarena, Vladimir; Kobayashi, Mariko; Kim, Ju Youn; Roehm, Pamela; Perez, Rosalia; Gardner, James; Wilson, Angus C; Mohr, Ian; Chao, Moses V
Herpes simplex virus-1 (HSV-1) establishes life-long latency in peripheral neurons where productive replication is suppressed. While periodic reactivation results in virus production, the molecular basis of neuronal latency remains incompletely understood. Using a primary neuronal culture system of HSV-1 latency and reactivation, we show that continuous signaling through the phosphatidylinositol 3-kinase (PI3-K) pathway triggered by nerve growth factor (NGF)-binding to the TrkA receptor tyrosine kinase (RTK) is instrumental in maintaining latent HSV-1. The PI3-K p110alpha catalytic subunit, but not the beta or delta isoforms, is specifically required to activate 3-phosphoinositide-dependent protein kinase-1 (PDK1) and sustain latency. Disrupting this pathway leads to virus reactivation. EGF and GDNF, two other growth factors capable of activating PI3-K and PDK1 but that differ from NGF in their ability to persistently activate Akt, do not fully support HSV-1 latency. Thus, the nature of RTK signaling is a critical host parameter that regulates the HSV-1 latent-lytic switch
PMCID:2988476
PMID: 20951966
ISSN: 1934-6069
CID: 113951

The ARMS/Kidins220 scaffold protein modulates synaptic transmission

Arevalo, Juan Carlos; Wu, Synphen H; Takahashi, Takuya; Zhang, Hong; Yu, Tao; Yano, Hiroko; Milner, Teresa A; Tessarollo, Lino; Ninan, Ipe; Arancio, Ottavio; Chao, Moses V
Activity-dependent changes of synaptic connections are facilitated by a variety of scaffold proteins, including PSD-95, Shank, SAP97 and GRIP, which serve to organize ion channels, receptors and enzymatic activities and to coordinate the actin cytoskeleton. The abundance of these scaffold proteins raises questions about the functional specificity of action of each protein. Here we report that basal synaptic transmission is regulated in an unexpected manner by the ankyrin repeat-rich membrane-spanning (ARMS/Kidins220) scaffold protein. In particular, decreases in the levels of ARMS/Kidins220 in vivo led to an increase in basal synaptic transmission in the hippocampus, without affecting paired pulse facilitation. One explanation to account for the effects of ARMS/Kidins220 is an interaction with the AMPA receptor subunit, GluA1, which could be observed after immunoprecipitation. Importantly, shRNA and cell surface biotinylation experiments indicate that ARMS/Kidins220 levels have an impact on GluA1 phosphorylation and localization. Moreover, ARMS/Kidins220 is a negative regulator of AMPAR function, which was confirmed by inward rectification assays. These results provide evidence that modulation of ARMS/Kidins220 levels can regulate basal synaptic strength in a specific manner in hippocampal neurons
PMCID:2923264
PMID: 20547223
ISSN: 1095-9327
CID: 111962

Transactivation of Trk receptors in spinal motor neurons

Domeniconi, Marco; Chao, Moses V
The neurotrophins are a family of trophic factors that have been shown to have neuroprotective effects after traumatic lesions of the nervous system and in animal models of neurodegenerative diseases. They mediate a broad spectrum of biological actions by interacting with tyrosine kinase receptors (Trk). While studies have demonstrated that neurotrophin administration may have beneficial effects, there were difficulties in delivering therapeutic quantities of these factors to spinal motor neurons. We now describe a strategy for applying transactivation of Trk receptors using small molecules, such as adenosine, which can penetrate the blood brain barrier and rescue motor neurons from cell death. Transactivation opens up the possibility of stimulating Trk receptors only in populations of neurons that co-express both Trk and adenosine receptors. We propose in this review to exploit transactivation to improve the survival of motor neurons in a transgenic mouse model of ALS and for other neurodegenerative diseases, such as Alzheimer's and Huntington's disease
PMID: 20607662
ISSN: 1699-5848
CID: 145798