Searched for: in-biosketch:yes
person:neubet01
Brain-Derived Neurotrophic Factor Signaling Rewrites the Glucocorticoid Transcriptome via Glucocorticoid Receptor Phosphorylation (vol 33, pg 3700, 2013) [Correction]
Lambert, W. Marcus; Xu, Chong-Feng; Neubert, Thomas A.; Chao, Moses V.; Garabedian, Michael J.; Jeanneteau, Freddy D.
ISI:000324912000016
ISSN: 0270-7306
CID: 612042
Brain-Derived Neurotrophic Factor Signaling Rewrites the Glucocorticoid Transcriptome via Glucocorticoid Receptor Phosphorylation
Lambert, W Marcus; Xu, Chong-Feng; Neubert, Thomas A; Chao, Moses V; Garabedian, Michael J; Jeanneteau, Freddy D
Abnormal glucocorticoid and neurotrophin signaling has been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a nonphosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF- and Dex-regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels of BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism.
PMCID:3753865
PMID: 23878391
ISSN: 0270-7306
CID: 540352
Design, Implementation and Multisite Evaluation of a System Suitability Protocol for the Quantitative Assessment of Instrument Performance in Liquid Chromatography-Multiple Reaction Monitoring-MS (LC-MRM-MS)
Abbatiello, Susan E; Mani, D R; Schilling, Birgit; Maclean, Brendan; Zimmerman, Lisa J; Feng, Xingdong; Cusack, Michael P; Sedransk, Nell; Hall, Steven C; Addona, Terri; Allen, Simon; Dodder, Nathan G; Ghosh, Mousumi; Held, Jason M; Hedrick, Victoria; Inerowicz, H Dorota; Jackson, Angela; Keshishian, Hasmik; Kim, Jong Won; Lyssand, John S; Riley, C Paige; Rudnick, Paul; Sadowski, Pawel; Shaddox, Kent; Smith, Derek; Tomazela, Daniela; Wahlander, Asa; Waldemarson, Sofia; Whitwell, Corbin A; You, Jinsam; Zhang, Shucha; Kinsinger, Christopher R; Mesri, Mehdi; Rodriguez, Henry; Borchers, Christoph H; Buck, Charles; Fisher, Susan J; Gibson, Bradford W; Liebler, Daniel; Maccoss, Michael; Neubert, Thomas A; Paulovich, Amanda; Regnier, Fred; Skates, Steven J; Tempst, Paul; Wang, Mu; Carr, Steven A
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.
PMCID:3769335
PMID: 23689285
ISSN: 1535-9476
CID: 557832
The N550K/H mutations in FGFR2 confer differential resistance to PD173074, dovitinib, and ponatinib ATP-competitive inhibitors
Byron, Sara A; Chen, Huaibin; Wortmann, Andreas; Loch, David; Gartside, Michael G; Dehkhoda, Farhad; Blais, Steven P; Neubert, Thomas A; Mohammadi, Moosa; Pollock, Pamela M
We sought to identify fibroblast growth factor receptor 2 (FGFR2) kinase domain mutations that confer resistance to the pan-FGFR inhibitor, dovitinib, and explore the mechanism of action of the drug-resistant mutations. We cultured BaF3 cells overexpressing FGFR2 in high concentrations of dovitinib and identified 14 dovitinib-resistant mutations, including the N550K mutation observed in 25% of FGFR2(mutant) endometrial cancers (ECs). Structural and biochemical in vitro kinase analyses, together with BaF3 proliferation assays, showed that the resistance mutations elevate the intrinsic kinase activity of FGFR2. BaF3 lines were used to assess the ability of each mutation to confer cross-resistance to PD173074 and ponatinib. Unlike PD173074, ponatinib effectively inhibited all the dovitinib-resistant FGFR2 mutants except the V565I gatekeeper mutation, suggesting ponatinib but not dovitinib targets the active conformation of FGFR2 kinase. EC cell lines expressing wild-type FGFR2 were relatively resistant to all inhibitors, whereas EC cell lines expressing mutated FGFR2 showed differential sensitivity. Within the FGFR2(mutant) cell lines, three of seven showed marked resistance to PD173074 and relative resistance to dovitinib and ponatinib. This suggests that alternative mechanisms distinct from kinase domain mutations are responsible for intrinsic resistance in these three EC lines. Finally, overexpression of FGFR2(N550K) in JHUEM-2 cells (FGFR2(C383R)) conferred resistance (about five-fold) to PD173074, providing independent data that FGFR2(N550K) can be associated with drug resistance. Biochemical in vitro kinase analyses also show that ponatinib is more effective than dovitinib at inhibiting FGFR2(N550K). We propose that tumors harboring mutationally activated FGFRs should be treated with FGFR inhibitors that specifically bind the active kinase.
PMCID:3730048
PMID: 23908597
ISSN: 1476-5586
CID: 575672
Cracking the Molecular Origin of Intrinsic Tyrosine Kinase Activity through Analysis of Pathogenic Gain-of-Function Mutations
Chen, Huaibin; Huang, Zhifeng; Dutta, Kaushik; Blais, Steven; Neubert, Thomas A; Li, Xiaokun; Cowburn, David; Traaseth, Nathaniel J; Mohammadi, Moosa
The basal (ligand-independent) kinase activity of receptor tyrosine kinases (RTKs) promotes trans-phosphorylation on activation loop tyrosines upon ligand-induced receptor dimerization, thus upregulating intrinsic kinase activity and triggering intracellular signaling. To understand the molecular determinants of intrinsic kinase activity, we used X-ray crystallography and NMR spectroscopy to analyze pathogenic FGF receptor mutants with gradations in gain-of-function activity. These structural analyses revealed a "two-state" dynamic equilibrium model whereby the kinase toggles between an "inhibited," structurally rigid ground state and a more dynamic and heterogeneous active state. The pathogenic mutations have different abilities to shift this equilibrium toward the active state. The increase in the fractional population of FGF receptors in the active state correlates with the degree of gain-of-function activity and clinical severity. Our data demonstrate that the fractional population of RTKs in the active state determines intrinsic kinase activity and underscore how a slight increase in the active population of kinases can have grave consequences for human health.
PMCID:3752781
PMID: 23871672
ISSN: 2211-1247
CID: 463582
Comparison of commercially available target enrichment methods for next-generation sequencing
Bodi, K; Perera, A G; Adams, P S; Bintzler, D; Dewar, K; Grove, D S; Kieleczawa, J; Lyons, R H; Neubert, T A; Noll, A C; Singh, S; Steen, R; Zianni, M
Isolating high-priority segments of genomes greatly enhances the efficiency of next-generation sequencing (NGS) by allowing researchers to focus on their regions of interest. For the 2010-11 DNA Sequencing Research Group (DSRG) study, we compared outcomes from two leading companies, Agilent Technologies (Santa Clara, CA, USA) and Roche NimbleGen (Madison, WI, USA), which offer custom-targeted genomic enrichment methods. Both companies were provided with the same genomic sample and challenged to capture identical genomic locations for DNA NGS. The target region totaled 3.5 Mb and included 31 individual genes and a 2-Mb contiguous interval. Each company was asked to design its best assay, perform the capture in replicates, and return the captured material to the DSRG-participating laboratories. Sequencing was performed in two different laboratories on Genome Analyzer IIx systems (Illumina, San Diego, CA, USA). Sequencing data were analyzed for sensitivity, specificity, and coverage of the desired regions. The success of the enrichment was highly dependent on the design of the capture probes. Overall, coverage variability was higher for the Agilent samples. As variant discovery is the ultimate goal for a typical targeted sequencing project, we compared samples for their ability to sequence single-nucleotide polymorphisms (SNPs) as a test of the ability to capture both chromosomes from the sample. In the targeted regions, we detected 2546 SNPs with the NimbleGen samples and 2071 with Agilent's. When limited to the regions that both companies included as baits, the number of SNPs was approximately 1000 for each, with Agilent and NimbleGen finding a small number of unique SNPs not found by the other.
PMCID:3605921
PMID: 23814499
ISSN: 1524-0215
CID: 452232
Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila
Ai, Minrong; Blais, Steven; Park, Jin-Yong; Min, Soohong; Neubert, Thomas A; Suh, Greg S B
Drosophila olfactory sensory neurons express either odorant receptors or ionotropic glutamate receptors (IRs). The sensory neurons that express IR64a, a member of the IR family, send axonal projections to either the DC4 or DP1m glomeruli in the antennal lobe. DC4 neurons respond specifically to acids/protons, whereas DP1m neurons respond to a broad spectrum of odorants. The molecular composition of IR64a-containing receptor complexes in either DC4 or DP1m neurons is not known, however. Here, we immunoprecipitated the IR64a protein from lysates of fly antennal tissue and identified IR8a as a receptor subunit physically associated with IR64a by mass spectrometry. IR8a mutants and flies in which IR8a was knocked down by RNAi in IR64a+ neurons exhibited defects in acid-evoked physiological and behavioral responses. Furthermore, we found that the loss of IR8a caused a significant reduction in IR64a protein levels. When expressed in Xenopus oocytes, IR64a and IR8a formed a functional ion channel that allowed ligand-evoked cation currents. These findings provide direct evidence that IR8a is a subunit that forms a functional olfactory receptor with IR64a in vivo to mediate odor detection.
PMCID:3693055
PMID: 23804096
ISSN: 0270-6474
CID: 509072
Detection and correction of interference in SRM analysis
Bao, Y; Waldemarson, S; Zhang, G; Wahlander, A; Ueberheide, B; Myung, S; Reed, B; Molloy, K; Padovan, J C; Eriksson, J; Neubert, T A; Chait, B T; Fenyo, D
Selected Reaction Monitoring (SRM) is a method of choice for accurate quantitation of low-abundance proteins in complex backgrounds. This strategy is, however, sensitive to interference from other components in the sample that have the same precursor and fragment masses as the monitored transitions. We present here an approach to detect interference by using the expected relative intensity of SRM transitions. We also designed an algorithm to automatically detect the linear range of calibration curves. These approaches were applied to the experimental data of Clinical Proteomic Tumor Analysis Consortium (CPTAC) Verification Work Group Study 7 and show that the corrected measurements provide more accurate quantitation than the uncorrected data.
PMCID:3771650
PMID: 23707623
ISSN: 1046-2023
CID: 415052
iPRG-2013: Proteome informatics research group study: Using rna-seq data to refine proteomic data analysis [Meeting Abstract]
Chalkley, R; Bandeira, N; Chambers, M C; Cottrell, J S; Deutsch, E W; Kapp, E A; Lam, H H N; Neubert, T A; Sun, R-X; Vitek, O; Weintraub, S T
The Proteome Informatics Research Group (iPRG) this year performed a study to evaluate the benefits of using databases derived from RNA-Seq data for peptide identifi-cation. The proteomic dataset provided consisted of high mass accuracy tandem mass spectra acquired when analyzing human peripheral blood mononuclear cells. A variety of different types of sequence databases were supplied. These included a standard protein sequence database; a database containing only sequences of proteins expressed in the sample based on RNA-Seq data; a database that included sequence and splice variants; a database of sequences that could not be reconciled to known expressed gene sequences. Participants were asked to report spectral identifications in the form of an Excel spreadsheet, highlighting those identifications that were only identified using one of the RNA-Seq derived specialized sequence databases. Participants were also required to complete a web-based questionnaire summarizing the tools and methods they used. Additional peptide identifications were achieved by the use of each of the different RNA-Seq derived databases, although the number of additional identifications was modest. Nevertheless, these new identifications could have potential biological significance, so this type of analysis may still be worthwhile
EMBASE:71779683
ISSN: 1524-0215
CID: 1476522
IPRG-2013: Proteome informatics research group study: Using RNA-seq data to refine proteomic data analysis [Meeting Abstract]
Chalkley, R; Bandeira, N; Chambers, M C; Cottrell, J S; Deutsch, E W; Kapp, E A; Lam, H H N; Neubert, T A; Sun, R-X; Vitek, O; Weintraub, S T
The Proteome Informatics Research Group (iPRG) this year performed a study to evaluate the benefits of using databases derived from RNA-Seq data for peptide identification. The proteomic dataset provided consisted of high mass accuracy tandem mass spectra acquired when analyzing human peripheral blood mononuclear cells. A variety of different types of sequence databases were supplied. These included a standard protein sequence database; a database containing only sequences of proteins expressed in the sam- ple based on RNA-Seq data; a database that included sequence and splice variants; a database of sequences that could not be reconciled to known expressed gene sequences. Participants were asked to report spectral identifications in the form of an Excel spreadsheet, highlighting those identifications that were only identified using one of the RNA-Seq derived specialized sequence databases. Participants were also required to complete a web-based questionnaire summarizing the tools and methods they used. Additional peptide identifications were achieved by the use of each of the different RNA-Seq derived databases, although the number of additional identifications was modest. Nevertheless, these new identifications could have potential biological significance, so this type of analysis may still be worthwhile
EMBASE:71779553
ISSN: 1524-0215
CID: 1476552