Searched for: in-biosketch:yes
person:torrev02
Staphylococcus aureus Leukocidin LukED and HIV-1 gp120 Target Different Sequence Determinants on CCR5
Tam, Kayan; Schultz, Megan; Reyes-Robles, Tamara; Vanwalscappel, Benedicte; Horton, Joshua; Alonzo, Francis 3rd; Wu, Beili; Landau, Nathaniel R; Torres, Victor J
Leukocidin ED (LukED) is a bicomponent pore-forming toxin produced by Staphylococcus aureus that lyses host cells by targeting the chemokine receptors CC chemokine receptor type 5 (CCR5), CXCR1, CXCR2, and DARC. In addition to its role as a receptor for LukED, CCR5 is the major coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and has been extensively studied. To compare how LukED and HIV-1 target CCR5, we analyzed their respective abilities to use CCR5/CCR2b chimeras to mediate cytotoxicity and virus entry. These analyses showed that the second and third extracellular loops (ECL) of CCR5 are necessary and sufficient for LukED to target the receptor and promote cell lysis. In contrast, the second ECL of CCR5 is necessary but not sufficient for HIV-1 infectivity. The analysis of CCR5 point mutations showed that glycine-163 is critical for HIV-1 infectivity, while arginine-274 and aspartic acid-276 are critical for LukED cytotoxicity. Point mutations in ECL2 diminished both HIV-1 infectivity and LukED cytotoxicity. Treatment of cells with LukED did not interfere with CCR5-tropic HIV-1 infectivity, demonstrating that LukED and the viral envelope glycoprotein use nonoverlapping sites on CCR5. Analysis of point mutations in LukE showed that amino acids 64 to 69 in the rim domain are required for CCR5 targeting and cytotoxicity. Taking the results together, this study identified the molecular basis by which LukED targets CCR5, highlighting the divergent molecular interactions evolved by HIV-1 and LukED to interact with CCR5. IMPORTANCE: The bicomponent pore-forming toxins are thought to play a vital role in the success of Staphylococcus aureus as a mammalian pathogen. One of the leukocidins, LukED, is necessary and sufficient for lethality in mice. At the molecular level, LukED causes cell lysis through binding to specific cellular receptors. CCR5 is one of the receptors targeted by LukED and is the major coreceptor for CCR5-tropic HIV-1. While the molecular interaction of CCR5 and HIV-1 is well characterized, the means by which LukED interacts with CCR5 is less clear. In this study, we demonstrated that receptor specificity is conferred through unique interactions between key domains on CCR5 and LukE. Although HIV-1 and LukED target the same receptor, our data demonstrated that they interact with CCR5 differently, highlighting the molecular complexity of host-pathogen interactions.
PMCID:5156306
PMID: 27965453
ISSN: 2150-7511
CID: 2363422
Host response to Staphylococcus aureus cytotoxins in children with cystic fibrosis
Chadha, Ashley D; Thomsen, Isaac P; Jimenez-Truque, Natalia; Soper, Nicole R; Jones, Lauren S; Sokolow, Andrew G; Torres, Victor J; Creech, C Buddy
BACKGROUND: Staphylococcus aureus is one of the earliest bacterial pathogens to colonize the lungs of children with cystic fibrosis and is an important contributor to pulmonary exacerbations. The adaptive host response to S. aureus in cystic fibrosis remains inadequately defined and has important implications for pathogenesis and potential interventions. The objectives of this study were to determine the functional antibody response to select staphylococcal exotoxins (LukAB, alpha-hemolysin, and PVL) in children with cystic fibrosis and to evaluate the relationship of this response with pulmonary exacerbations. METHODS: Fifty children with cystic fibrosis were enrolled and followed prospectively for 12months. Clinical characteristics and serologic profiles were assessed at routine visits and during pulmonary exacerbations, and functional antibody assessments were performed to measure neutralization of LukAB-mediated cytotoxicity. RESULTS: For each antigen, geometric mean titers were significantly higher if S. aureus was detected at the time of exacerbation. For LukAB, geometric mean titers were significantly higher at exacerbation follow-up compared to titers during the exacerbation, consistent with expression during human disease, and the humoral response capably neutralized LukAB-mediated cytotoxicity. Moreover, the presence of a positive S. aureus culture during a pulmonary exacerbation was associated with 31-fold higher odds of having a LukA titer >/=1:160, suggesting potential diagnostic capability of this assay. CONCLUSIONS: The leukotoxin LukAB is expressed by S. aureus and recognized by the human adaptive immune response in the setting of pulmonary infection in cystic fibrosis. Anti-LukAB antibodies were not only predictive of positive staphylococcal culture during exacerbation, but also functional in the neutralization of this toxin.
PMCID:4959994
PMID: 26821814
ISSN: 1873-5010
CID: 1929702
Staphylococcus aureus Coordinates Leukocidin Expression and Pathogenesis by Sensing Metabolic Fluxes via RpiRc
Balasubramanian, Divya; Ohneck, Elizabeth A; Chapman, Jessica; Weiss, Andy; Kim, Min Kyung; Reyes-Robles, Tamara; Zhong, Judy; Shaw, Lindsey N; Lun, Desmond S; Ueberheide, Beatrix; Shopsin, Bo; Torres, Victor J
Staphylococcus aureus is a formidable human pathogen that uses secreted cytolytic factors to injure immune cells and promote infection of its host. Of these proteins, the bicomponent family of pore-forming leukocidins play critical roles in S. aureus pathogenesis. The regulatory mechanisms governing the expression of these toxins are incompletely defined. In this work, we performed a screen to identify transcriptional regulators involved in leukocidin expression in S. aureus strain USA300. We discovered that a metabolic sensor-regulator, RpiRc, is a potent and selective repressor of two leukocidins, LukED and LukSF-PV. Whole-genome transcriptomics, S. aureus exoprotein proteomics, and metabolomic analyses revealed that RpiRc influences the expression and production of disparate virulence factors. Additionally, RpiRc altered metabolic fluxes in the trichloroacetic acid cycle, glycolysis, and amino acid metabolism. Using mutational analyses, we confirmed and extended the observation that RpiRc signals through the accessory gene regulatory (Agr) quorum-sensing system in USA300. Specifically, RpiRc represses the rnaIII promoter, resulting in increased repressor of toxins (Rot) levels, which in turn negatively affect leukocidin expression. Inactivation of rpiRc phenocopied rot deletion and increased S. aureus killing of primary human polymorphonuclear leukocytes and the pathogenesis of bloodstream infection in vivo. Collectively, our results suggest that S. aureus senses metabolic shifts by RpiRc to differentially regulate the expression of leukocidins and to promote invasive disease. IMPORTANCE: The bicomponent pore-forming leukocidins play pivotal roles in the ability of S. aureus to kill multiple host immune cells, thus enabling this pathogen to have diverse tissue- and species-tropic effects. While the mechanisms of leukocidin-host receptor interactions have been studied in detail, the regulatory aspects of leukocidin expression are less well characterized. Moreover, the expression of the leukocidins is highly modular in vitro, suggesting the presence of regulators other than the known Agr, Rot, and S. aureus exoprotein pathways. Here, we describe how RpiRc, a metabolite-sensing transcription factor, mediates the repression of two specific leukocidin genes, lukED and pvl, which in turn has complex effects on the pathogenesis of S. aureus Our findings highlight the intricacies of leukocidin regulation by S. aureus and demonstrate the involvement of factors beyond traditional virulence factor regulators.
PMCID:4916384
PMID: 27329753
ISSN: 2150-7511
CID: 2157972
The Endurance of Microbiology: An Interview with Mike Jetten, Mark Martin, Ute Romling, and Victor Torres
Jetten, Mike S M; Martin, Mark O; Romling, Ute; Torres, Victor J
PMID: 27102958
ISSN: 1878-4380
CID: 2080162
Exploiting dominant-negative toxins to combat Staphylococcus aureus pathogenesis
Reyes-Robles, Tamara; Lubkin, Ashira; Alonzo, Francis 3rd; Lacy, D Borden; Torres, Victor J
PMCID:5341525
PMID: 27139260
ISSN: 1469-3178
CID: 2179682
Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections
Sause, William E; Buckley, Peter T; Strohl, William R; Lynch, A Simon; Torres, Victor J
The growing incidence of serious infections mediated by methicillin-resistant Staphylococcus aureus (MRSA) strains poses a significant risk to public health. This risk is exacerbated by a prolonged void in the discovery and development of truly novel antibiotics and the absence of a vaccine. These gaps have created renewed interest in the use of biologics in the prevention and treatment of serious staphylococcal infections. In this review, we focus on efforts towards the discovery and development of antibody-based biologic agents and their potential as clinical agents in the management of serious S. aureus infections. Recent promising data for monoclonal antibodies (mAbs) targeting anthrax and Ebola highlight the potential of antibody-based biologics as therapeutic agents for serious infections.
PMCID:4764385
PMID: 26719219
ISSN: 1873-3735
CID: 1895242
Exploiting dominant-negative toxins to combat Staphylococcus aureus pathogenesis
Reyes-Robles, Tamara; Lubkin, Ashira; Alonzo, Francis 3rd; Lacy, D Borden; Torres, Victor J
Staphylococcus aureus (S. aureus) is a human pathogen that relies on the subversion of host phagocytes to support its pathogenic lifestyle. S. aureus strains can produce up to five beta-barrel, bi-component, pore-forming leukocidins that target and kill host phagocytes. Thus, preventing immune cell killing by these toxins is likely to boost host immunity. Here, we describe the identification of glycine-rich motifs within the membrane-penetrating stem domains of the leukocidin subunits that are critical for killing primary human neutrophils. Remarkably, leukocidins lacking these glycine-rich motifs exhibit dominant-negative inhibitory effects toward their wild-type toxin counterparts as well as other leukocidins. Biochemical and cellular assays revealed that these dominant-negative toxins work by forming mixed complexes that are impaired in pore formation. The dominant-negative leukocidins inhibited S. aureus cytotoxicity toward primary human neutrophils, protected mice from lethal challenge by wild-type leukocidin, and reduced bacterial burden in a murine model of bloodstream infection. Thus, we describe the first example of staphylococcal bi-component dominant-negative toxins and their potential as novel therapeutics to combat S. aureus infection.
PMCID:4772982
PMID: 26882549
ISSN: 1469-3178
CID: 1949662
The Relationship Between Glycan-Binding and Direct Membrane Interactions in Vibrio cholerae Cytolysin, a Channel-Forming Toxin
De, Swastik; Bubnys, Adele; Alonzo, Francis 3rd; Hyun, Jinsol; Lary, Jeffrey W; Cole, James L; Torres, Victor J; Olson, Rich
Bacterial pore-forming toxins (PFTs) are structurally diverse pathogen-secreted proteins that form cell-damaging channels in the membranes of host cells. Most PFTs are released as water-soluble monomers that first oligomerize on the membrane before inserting a transmembrane channel. To modulate specificity and increase potency, many PFTs recognize specific cell-surface receptors that increase the local toxin concentration on cell membranes thereby facilitating channel formation. Vibrio cholerae cytolysin (VCC) is a toxin secreted by the human pathogen responsible for pandemic cholera disease and acts as a defensive agent against the host immune system. While it has been shown that VCC utilizes specific glycan receptors on the cell surface, additional direct contacts with the membrane must also play a role in toxin binding. To better understand the nature of these interactions, we conducted a systematic investigation of the membrane-binding surface of VCC to identify additional membrane interactions important in cell targeting. Through cell-based assays on several human-derived cell-lines we show that VCC is unlikely to utilize high-affinity protein receptors like structurally similar toxins from Staphylococcus aureus. Next, we identified a number of specific amino-acid residues that greatly diminish the VCC potency against cells and investigated the interplay between glycan-binding and these direct lipid contacts. Finally, we used model membranes to parse the importance of these key residues in lipid and cholesterol binding. Our study provides a complete functional map of the VCC membrane-binding surface and insights into the integration of sugar, lipid, and cholesterol binding-interactions.
PMCID:4653697
PMID: 26416894
ISSN: 1083-351x
CID: 1789802
The ever-emerging complexity of alpha-toxin's interaction with host cells
Lubkin, Ashira; Torres, Victor J
PMCID:4655550
PMID: 26542682
ISSN: 1091-6490
CID: 1826022
Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes
Spaan, Andras N; Reyes-Robles, Tamara; Badiou, Cedric; Cochet, Sylvie; Boguslawski, Kristina M; Yoong, Pauline; Day, Christopher J; de Haas, Carla J C; van Kessel, Kok P M; Vandenesch, Francois; Jennings, Michael P; Le Van Kim, Caroline; Colin, Yves; van Strijp, Jos A G; Henry, Thomas; Torres, Victor J
In order for Staphylococcus aureus to thrive inside the mammalian host, the bacterium has to overcome iron scarcity. S. aureus is thought to produce toxins that lyse erythrocytes, releasing hemoglobin, the most abundant iron source in mammals. Here we identify the Duffy antigen receptor for chemokines (DARC) as the receptor for the S. aureus hemolytic leukocidins LukED and HlgAB. By assessing human erythrocytes with DARC polymorphisms, we determined that HlgAB- and LukED-mediated lysis directly relates to DARC expression. DARC is required for S. aureus-mediated lysis of human erythrocytes, and DARC overexpression is sufficient to render cells susceptible to toxin-mediated lysis. HlgA and LukE bind directly to DARC through different regions, and by targeting DARC, HlgAB and LukED support S. aureus growth in a hemoglobin-acquisition-dependent manner. These findings elucidate how S. aureus targets and lyses erythrocytes to release one of the scarcest nutrients within the mammalian host.
PMCID:4578157
PMID: 26320997
ISSN: 1934-6069
CID: 1761602