Searched for: in-biosketch:yes
person:ueberb01
Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer's disease
Drummond, Eleanor; Nayak, Shruti; Faustin, Arline; Pires, Geoffrey; A Hickman, Richard; Askenazi, Manor; Cohen, Mark; Haldiman, Tracy; Kim, Chae; Han, Xiaoxia; Shao, Yongzhao; Safar, Jiri G; Ueberheide, Beatrix; Wisniewski, Thomas
Rapidly progressive Alzheimer's disease (rpAD) is a particularly aggressive form of Alzheimer's disease, with a median survival time of 7-10 months after diagnosis. Why these patients have such a rapid progression of Alzheimer's disease is currently unknown. To further understand pathological differences between rpAD and typical sporadic Alzheimer's disease (sAD) we used localized proteomics to analyze the protein differences in amyloid plaques in rpAD and sAD. Label-free quantitative LC-MS/MS was performed on amyloid plaques microdissected from rpAD and sAD patients (n = 22 for each patient group) and protein expression differences were quantified. On average, 913 +/- 30 (mean +/- SEM) proteins were quantified in plaques from each patient and 279 of these proteins were consistently found in plaques from every patient. We found significant differences in protein composition between rpAD and sAD plaques. We found that rpAD plaques contained significantly higher levels of neuronal proteins (p = 0.0017) and significantly lower levels of astrocytic proteins (p = 1.08 x 10-6). Unexpectedly, cumulative protein differences in rpAD plaques did not suggest accelerated typical sAD. Plaques from patients with rpAD were particularly abundant in synaptic proteins, especially those involved in synaptic vesicle release, highlighting the potential importance of synaptic dysfunction in the accelerated development of plaque pathology in rpAD. Combined, our data provide new direct evidence that amyloid plaques do not all have the same protein composition and that the proteomic differences in plaques could provide important insight into the factors that contribute to plaque development. The cumulative protein differences in rpAD plaques suggest rpAD may be a novel subtype of Alzheimer's disease.
PMCID:5503748
PMID: 28258398
ISSN: 1432-0533
CID: 2471712
Phosphoproteomics of FGF1 signaling in chondrocytes: Identifying the signature of inhibitory response
Chapman, Jessica R; Katsara, Olga; Ruoff, Rachel; Morgenstern, David; Nayak, Shruti; Basilico, Claudio; Ueberheide, Beatrix; Kolupaeva, Victoria
Fibroblast growth factor (FGF) signaling is vital for many biological processes, beginning with development. The importance of FGF signaling for skeleton formation was first discovered by the analysis of genetic FGFR mutations which cause several bone morphogenetic disorders, including achondroplasia, the most common form of human dwarfism. The formation of the long bones is mediated through proliferation and differentiation of highly specialized cells - chondrocytes. Chondrocytes respond to FGF with growth inhibition, a unique response which differs from the proliferative response of the majority of cell types; however its molecular determinants are still unclear. Quantitative phosphoproteomic analysis was utilized to catalogue the proteins whose phosphorylation status is changed upon FGF1 treatment. The generated dataset consists of 756 proteins. We were able to localize the divergence between proliferative (canonical) and inhibitory (chondrocyte specific) FGF transduction pathways immediately upstream of AKT kinase. Gene Ontology (GO) analysis of the FGF1 regulated peptides revealed that many of the identified phosphorylated proteins are assigned to negative regulation clusters, in accordance with the observed inhibitory growth response. This is the first time a comprehensive subset of proteins involved in FGF inhibitory response is defined. We were able to identify a number of targets and specifically discover glycogen synthase kinase3beta (GSK3beta) as a novel key mediator of FGF inhibitory response in chondrocytes.
PMCID:5461542
PMID: 28298517
ISSN: 1535-9484
CID: 2490042
SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase function
Coleman, Kate E; Bekes, Miklos; Chapman, Jessica R; Crist, Sarah B; Jones, Mathew Jk; Ueberheide, Beatrix M; Huang, Tony T
NEDD8 is a ubiquitin-like modifier most well-studied for its role in activating the largest family of ubiquitin E3 ligases, the cullin-RING ligases (CRLs). While many non-cullin neddylation substrates have been proposed over the years, validation of true NEDD8 targets has been challenging, as overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery. Here, we developed a deconjugation-resistant form of NEDD8 to stabilize the neddylated form of cullins and other non-cullin substrates. Using this strategy, we identified Ubc12, a NEDD8-specific E2 conjugating enzyme, as a substrate for auto-neddylation. Furthermore, we characterized SENP8/DEN1 as the protease that counteracts Ubc12 auto-neddylation, and observed aberrant neddylation of Ubc12 and other NEDD8 conjugation pathway components in SENP8-deficient cells. Importantly, loss of SENP8 function contributes to accumulation of CRL substrates and defective cell cycle progression. Thus, our study highlights the importance of SENP8 in maintaining proper neddylation levels for CRL-dependent proteostasis.
PMCID:5419743
PMID: 28475037
ISSN: 2050-084x
CID: 2546892
Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery
Sen, K Ilker; Tang, Wilfred H; Nayak, Shruti; Kil, Yong J; Bern, Marshall; Ozoglu, Berk; Ueberheide, Beatrix; Davis, Darryl; Becker, Christopher
Applications of antibody de novo sequencing in the biopharmaceutical industry range from the discovery of new antibody drug candidates to identifying reagents for research and determining the primary structure of innovator products for biosimilar development. When murine, phage display, or patient-derived monoclonal antibodies against a target of interest are available, but the cDNA or the original cell line is not, de novo protein sequencing is required to humanize and recombinantly express these antibodies, followed by in vitro and in vivo testing for functional validation. Availability of fully automated software tools for monoclonal antibody de novo sequencing enables efficient and routine analysis. Here, we present a novel method to automatically de novo sequence antibodies using mass spectrometry and the Supernovo software. The robustness of the algorithm is demonstrated through a series of stress tests. Graphical Abstract .
PMCID:5392168
PMID: 28105549
ISSN: 1879-1123
CID: 2414062
Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance
Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W; Lee, Ki Buom; Zambirinis, Constantinos P; Pandian, Gautam Sd Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K; Ueberheide, Beatrix; Miller, George
The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a-the gene encoding dectin 1-or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1-galectin 9 axis, CD4+ and CD8+ T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.
PMCID:5419876
PMID: 28394331
ISSN: 1546-170x
CID: 2528112
Using quantitative mass spectrometry to better understand the influence of genetics and nutritional perturbations on the virulence potential of Staphylococcus aureus
Chapman, Jessica R; Balasubramanian, Divya; Tam, Kayan; Askenazi, Manor; Copin, Richard; Shopsin, Bo; Torres, Victor J; Ueberheide, Beatrix
Staphylococcus aureus (Sa) is the leading cause of a variety of bacterial infections ranging from superficial skin infections to invasive and life threatening diseases such as septic bacteremia, necrotizing pneumonia, and endocarditis. The success of Sa as a human pathogen is due to its ability to adapt to the environment by changing expression, production, or secretion of virulence factors. Although Sa immune evasion is well-studied, the regulation of virulence factors under different nutrient and growth conditions is still not well understood. Here, we used label-free quantitative mass spectrometry to quantify and compare the secreted Sa proteins (i.e. exoproteomes) of master regulator mutants or established reference strains. Different environmental conditions were addressed by growing the bacteria in rich or minimal media at different phases of growth. We observed clear differences in the composition of the exoproteomes depending on the genetic background or growth conditions. The relative abundance of cytotoxins determined in our study correlated well with differences in cytotoxicity measured by lysis of human neutrophils. Our findings demonstrate that label-free quantitative mass spectrometry is a versatile tool for predicting the virulence of bacterial strains and highlights the importance of the experimental design for in vitro studies. Furthermore, the results indicate that label-free proteomics can be used to cluster isolates into groups with similar virulence properties and genetic lineages, highlighting the power of label-free quantitative mass spectrometry to distinguish Sa strains.
PMCID:5393389
PMID: 28196877
ISSN: 1535-9484
CID: 2449162
Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond
Mitchell, Leslie A; Wang, Ann; Stracquadanio, Giovanni; Kuang, Zheng; Wang, Xuya; Yang, Kun; Richardson, Sarah; Martin, J Andrew; Zhao, Yu; Walker, Roy; Luo, Yisha; Dai, Hongjiu; Dong, Kang; Tang, Zuojian; Yang, Yanling; Cai, Yizhi; Heguy, Adriana; Ueberheide, Beatrix; Fenyo, David; Dai, Junbiao; Bader, Joel S; Boeke, Jef D
We describe design, rapid assembly, and characterization of synthetic yeast Sc2.0 chromosome VI (synVI). A mitochondrial defect in the synVI strain mapped to synonymous coding changes within PRE4 (YFR050C), encoding an essential proteasome subunit; Sc2.0 coding changes reduced Pre4 protein accumulation by half. Completing Sc2.0 specifies consolidation of 16 synthetic chromosomes into a single strain. We investigated phenotypic, transcriptional, and proteomewide consequences of Sc2.0 chromosome consolidation in poly-synthetic strains. Another "bug" was discovered through proteomic analysis, associated with alteration of the HIS2 transcription start due to transfer RNA deletion and loxPsym site insertion. Despite extensive genetic alterations across 6% of the genome, no major global changes were detected in the poly-synthetic strain "omics" analyses. This work sets the stage for completion of a designer, synthetic eukaryotic genome.
PMID: 28280154
ISSN: 1095-9203
CID: 2476892
Core-shell microparticles for the enrichment and discovery of cationic antimicrobial peptides (CAMPs) [Meeting Abstract]
Zhu, Yaling; Ueberheide, Beatrix; Bishop, Barney
ISI:000429525603097
ISSN: 0065-7727
CID: 4706702
Localized Proteomics of Individual Neurons Isolated from Formalin-Fixed, Paraffin-Embedded Tissue Sections Using Laser Capture Microdissection
Drummond, Eleanor; Nayak, Shruti; Ueberheide, Beatrix; Wisniewski, Thomas
ISI:000429058300020
ISSN: 0893-2336
CID: 4706692
Dectin-1 signaling drives pancreatic oncogenesis by promoting adaptive immune suppression [Meeting Abstract]
Daley, Donnele; Akkad, Neha; Mohan, Navyatha; Ochi, Atsuo; Werba, Gregor; Mani, Vishnu; Barilla, Rocky; Zambirinis, Constantinos; Hundeyin, Mautin; Lee, Ki Buom; Chang, Steven; Wang, Ding; Gardener, Lawrence; Ueberheide, Beatrix; Miller, George
ISI:000419245100007
ISSN: 2326-6066
CID: 4706662