Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:yanaii01

Total Results:

108


GeneAnnot: interfacing GeneCards with high-throughput gene expression compendia

Chalifa-Caspi, Vered; Shmueli, Orit; Benjamin-Rodrig, Hila; Rosen, Naomi; Shmoish, Michael; Yanai, Itai; Ophir, Ron; Kats, Pavel; Safran, Marilyn; Lancet, Doron
The interpretation of microarray expression results often includes extensive efforts to identify and annotate the gene representatives immobilised on the arrays. In this paper we describe the usage of our automatic GeneAnnot system, which links between Affymetrix arrays and the rich human gene annotations available in GeneCards. We explain GeneCards search options and results display; elaborate on the presentation of expression information in GeneCards, including both our whole-genome GeneNote project and external expression resources; describe the various parameters and displays used by GeneAnnot to assess the annotation quality and probeset specificity; and show how to search GeneAnnot and GeneNote websites directly.
PMID: 14725348
ISSN: 1467-5463
CID: 2050182

The integrated world of functional genomics [Meeting Abstract]

Yanai, Itai
PMCID:151279
PMID: 12537543
ISSN: 1474-760x
CID: 2050192

The society of genes: networks of functional links between genes from comparative genomics

Yanai, Itai; DeLisi, Charles
BACKGROUND: Comparative genomics provides at least three methods beyond traditional sequence similarity for identifying functional links between genes: the examination of common phylogenetic distributions, the analysis of conserved proximity along the chromosomes of multiple genomes, and observations of fusions of genes into a multidomain gene in another organism. We have previously generated the links according to each of these methods individually for 43 known microbial genomes. Here we combine these results to construct networks of functional associations. RESULTS: We show that the functional networks obtained by applying these methods have different topologies and that the information they provide is largely additive. In particular, the combined networks of functional links contain an average of 57% of an organism's complete genetic complement, uncover substantial portions of known pathways, and suggest the function of previously unannotated genes. In addition, the combined networks are qualitatively different from the networks obtained using individual methods. They have a dominant cluster that contains approximately 80%-90% of the genes, independent of genome size, and the dominant clusters show the small world behavior expected of a biological system, with global connectivity that is nearly random, and local properties that are highly ordered. CONCLUSIONS: When the information on functional linkage provided by three emerging computational methods is combined, the integrated network uncovers large numbers of conserved pathways and identifies clusters of functionally related genes. It therefore shows considerable utility and promise as a tool for understanding genomic structure, and for guiding high throughput experimental investigations.
PMCID:133448
PMID: 12429063
ISSN: 1474-760x
CID: 2050202

Identifying functional links between genes using conserved chromosomal proximity

Yanai, Itai; Mellor, Joseph C; DeLisi, Charles
Conservation of proximity of a pair of genes across multiple genomes generally indicates that their functions could be linked. Here, we present a systematic evaluation using 42 complete microbial genomes from 25 phylogenetic groups to test the reliability of this observation in predicting function for genes. We find a relationship between the number of phylogenetic groups in which a gene pair is proximate and the probability that the pair belongs to a common pathway. Our method produces 1586 links between ortholog families substantiated by observed proximity in genomes representing at least three phylogenetic groups. Of the pairs annotated in the KEGG database, 80% are in the same biological pathway in KEGG.
PMID: 11932011
ISSN: 0168-9525
CID: 2050212

Predictome: a database of putative functional links between proteins

Mellor, Joseph C; Yanai, Itai; Clodfelter, Karl H; Mintseris, Julian; DeLisi, Charles
The current deluge of genomic sequences has spawned the creation of tools capable of making sense of the data. Computational and high-throughput experimental methods for generating links between proteins have recently been emerging. These methods effectively act as hypothesis machines, allowing researchers to screen large sets of data to detect interesting patterns that can then be studied in greater detail. Although the potential use of these putative links in predicting gene function has been demonstrated, a central repository for all such links for many genomes would maximize their usefulness. Here we present Predictome, a database of predicted links between the proteins of 44 genomes based on the implementation of three computational methods--chromosomal proximity, phylogenetic profiling and domain fusion--and large-scale experimental screenings of protein-protein interaction data. The combination of data from various predictive methods in one database allows for their comparison with each other, as well as visualization of their correlation with known pathway information. As a repository for such data, Predictome is an ongoing resource for the community, providing functional relationships among proteins as new genomic data emerges. Predictome is available at http://predictome.bu.edu.
PMCID:99135
PMID: 11752322
ISSN: 1362-4962
CID: 2050232

Evolution of gene fusions: horizontal transfer versus independent events

Yanai, Itai; Wolf, Yuri I; Koonin, Eugene V
BACKGROUND: Gene fusions can be used as tools for functional prediction and also as evolutionary markers. Fused genes often show a scattered phyletic distribution, which suggests a role for processes other than vertical inheritance in their evolution. RESULTS: The evolutionary history of gene fusions was studied by phylogenetic analysis of the domains in the fused proteins and the orthologous domains that form stand-alone proteins. Clustering of fusion components from phylogenetically distant species was construed as evidence of dissemination of the fused genes by horizontal transfer. Of the 51 examined gene fusions that are represented in at least two of the three primary kingdoms (Bacteria, Archaea and Eukaryota), 31 were most probably disseminated by cross-kingdom horizontal gene transfer, whereas 14 appeared to have evolved independently in different kingdoms and two were probably inherited from the common ancestor of modern life forms. On many occasions, the evolutionary scenario also involves one or more secondary fissions of the fusion gene. For approximately half of the fusions, stand-alone forms of the fusion components are encoded by juxtaposed genes, which are known or predicted to belong to the same operon in some of the prokaryotic genomes. This indicates that evolution of gene fusions often, if not always, involves an intermediate stage, during which the future fusion components exist as juxtaposed and co-regulated, but still distinct, genes within operons. CONCLUSION: These findings suggest a major role for horizontal transfer of gene fusions in the evolution of protein-domain architectures, but also indicate that independent fusions of the same pair of domains in distant species is not uncommon, which suggests positive selection for the multidomain architectures.
PMCID:115226
PMID: 12049665
ISSN: 1474-760x
CID: 2050222

Genes linked by fusion events are generally of the same functional category: a systematic analysis of 30 microbial genomes

Yanai, I; Derti, A; DeLisi, C
Recent work in computational genomics has shown that a functional association between two genes can be derived from the existence of a fusion of the two as one continuous sequence in another genome. For each of 30 completely sequenced microbial genomes, we established all such fusion links among its genes and determined the distribution of links within and among 15 broad functional categories. We found that 72% of all fusion links related genes of the same functional category. A comparison of the distribution of links to simulations on the basis of a random model further confirmed the significance of intracategory fusion links. Where a gene of annotated function is linked to an unclassified gene, the fusion link suggests that the two genes belong to the same functional category. The predictions based on fusion links are shown here for Methanobacterium thermoautotrophicum, and another 661 predictions are available at http://fusion.bu.edu.
PMCID:35447
PMID: 11438739
ISSN: 0027-8424
CID: 2050362

The complete human olfactory subgenome

Glusman, G; Yanai, I; Rubin, I; Lancet, D
Olfactory receptors likely constitute the largest gene superfamily in the vertebrate genome. Here we present the nearly complete human olfactory subgenome elucidated by mining the genome draft with gene discovery algorithms. Over 900 olfactory receptor genes and pseudogenes (ORs) were identified, two-thirds of which were not annotated previously. The number of extrapolated ORs is in good agreement with previous theoretical predictions. The sequence of at least 63% of the ORs is disrupted by what appears to be a random process of pseudogene formation. ORs constitute 17 gene families, 4 of which contain more than 100 members each. "Fish-like" Class I ORs, previously considered a relic in higher tetrapods, constitute as much as 10% of the human repertoire, all in one large cluster on chromosome 11. Their lower pseudogene fraction suggests a functional significance. ORs are disposed on all human chromosomes except 20 and Y, and nearly 80% are found in clusters of 6-138 genes. A novel comparative cluster analysis was used to trace the evolutionary path that may have led to OR proliferation and diversification throughout the genome. The results of this analysis suggest the following genome expansion history: first, the generation of a "tetrapod-specific" Class II OR cluster on chromosome 11 by local duplication, then a single-step duplication of this cluster to chromosome 1, and finally an avalanche of duplication events out of chromosome 1 to most other chromosomes. The results of the data mining and characterization of ORs can be accessed at the Human Olfactory Receptor Data Exploratorium Web site (http://bioinfo.weizmann.ac.il/HORDE).
PMID: 11337468
ISSN: 1088-9051
CID: 2050352