Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:boekej01

Total Results:

489


Intact piRNA pathway prevents L1 mobilization in male meiosis

Newkirk, Simon J; Lee, Suman; Grandi, Fiorella C; Gaysinskaya, Valeriya; Rosser, James M; Vanden Berg, Nicole; Hogarth, Cathryn A; Marchetto, Maria C N; Muotri, Alysson R; Griswold, Michael D; Ye, Ping; Bortvin, Alex; Gage, Fred H; Boeke, Jef D; An, Wenfeng
The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1-/- testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1-/- germ cells compared with the wild-type. Analysis of adult Mov10l1-/- germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1-/- phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.
PMCID:5514719
PMID: 28630288
ISSN: 1091-6490
CID: 2604222

Structural variants caused by Alu insertions are associated with risks for many human diseases

Payer, Lindsay M; Steranka, Jared P; Yang, Wan Rou; Kryatova, Maria; Medabalimi, Sibyl; Ardeljan, Daniel; Liu, Chunhong; Boeke, Jef D; Avramopoulos, Dimitri; Burns, Kathleen H
Interspersed repeat sequences comprise much of our DNA, although their functional effects are poorly understood. The most commonly occurring repeat is the Alu short interspersed element. New Alu insertions occur in human populations, and have been responsible for several instances of genetic disease. In this study, we sought to determine if there are instances of polymorphic Alu insertion variants that function in a common variant, common disease paradigm. We cataloged 809 polymorphic Alu elements mapping to 1,159 loci implicated in disease risk by genome-wide association study (GWAS) (P < 10-8). We found that Alu insertion variants occur disproportionately at GWAS loci (P = 0.013). Moreover, we identified 44 of these Alu elements in linkage disequilibrium (r2 > 0.7) with the trait-associated SNP. This figure represents a >20-fold increase in the number of polymorphic Alu elements associated with human phenotypes. This work provides a broader perspective on how structural variants in repetitive DNAs may contribute to human disease.
PMCID:5441760
PMID: 28465436
ISSN: 1091-6490
CID: 2545872

New Orthogonal Transcriptional Switches Derived from Tet Repressor Homologues for Saccharomyces cerevisiae Regulated by 2,4-Diacetylphloroglucinol and Other Ligands

Ikushima, Shigehito; Boeke, Jef D
Here we describe the development of tightly regulated expression switches in yeast, by engineering distant homologues of Escherichia coli TetR, including the transcriptional regulator PhlF from Pseudomonas and others. Previous studies demonstrated that the PhlF protein bound its operator sequence (phlO) in the absence of 2,4-diacetylphloroglucinol (DAPG) but dissociated from phlO in the presence of DAPG. Thus, we developed a DAPG-Off system in which expression of a gene preceded by the phlO-embedded promoter was activated by a fusion of PhlF to a multimerized viral activator protein (VP16) domain in a DAPG-free environment but repressed when DAPG was added to growth medium. In addition, we constructed a DAPG-On system with the opposite behavior of the DAPG-Off system; i.e., DAPG triggers the expression of a reporter gene. Exposure of DAPG to yeast cells did not cause any serious deleterious effect on yeast physiology in terms of growth. Efforts to engineer additional Tet repressor homologues were partially successful and a known mammalian switch, the p-cumate switch based on CymR from Pseudomonas, was found to function in yeast. Orthogonality between the TetR (doxycycline), CamR (d-camphor), PhlF (DAPG), and CymR (p-cumate)-based Off switches was demonstrated by evaluating all 4 ligands against suitably engineered yeast strains. This study expands the toolbox of "On" and "Off" switches for yeast biotechnology.
PMID: 28005347
ISSN: 2161-5063
CID: 2369292

Engineering the ribosomal DNA in a megabase synthetic chromosome

Zhang, Weimin; Zhao, Guanghou; Luo, Zhouqing; Lin, Yicong; Wang, Lihui; Guo, Yakun; Wang, Ann; Jiang, Shuangying; Jiang, Qingwen; Gong, Jianhui; Wang, Yun; Hou, Sha; Huang, Jing; Li, Tianyi; Qin, Yiran; Dong, Junkai; Qin, Qin; Zhang, Jiaying; Zou, Xinzhi; He, Xi; Zhao, Li; Xiao, Yibo; Xu, Meng; Cheng, Erchao; Huang, Ning; Zhou, Tong; Shen, Yue; Walker, Roy; Luo, Yisha; Kuang, Zheng; Mitchell, Leslie A; Yang, Kun; Richardson, Sarah M; Wu, Yi; Li, Bing-Zhi; Yuan, Ying-Jin; Yang, Huanming; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Bader, Joel S; Cai, Yizhi; Boeke, Jef D; Dai, Junbiao
We designed and synthesized a 976,067-base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae SynXII was assembled using a two-step method, specified by successive megachunk integration and meiotic recombination-mediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect "bugs" detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.
PMID: 28280149
ISSN: 1095-9203
CID: 2477372

Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond

Mitchell, Leslie A; Wang, Ann; Stracquadanio, Giovanni; Kuang, Zheng; Wang, Xuya; Yang, Kun; Richardson, Sarah; Martin, J Andrew; Zhao, Yu; Walker, Roy; Luo, Yisha; Dai, Hongjiu; Dong, Kang; Tang, Zuojian; Yang, Yanling; Cai, Yizhi; Heguy, Adriana; Ueberheide, Beatrix; Fenyo, David; Dai, Junbiao; Bader, Joel S; Boeke, Jef D
We describe design, rapid assembly, and characterization of synthetic yeast Sc2.0 chromosome VI (synVI). A mitochondrial defect in the synVI strain mapped to synonymous coding changes within PRE4 (YFR050C), encoding an essential proteasome subunit; Sc2.0 coding changes reduced Pre4 protein accumulation by half. Completing Sc2.0 specifies consolidation of 16 synthetic chromosomes into a single strain. We investigated phenotypic, transcriptional, and proteomewide consequences of Sc2.0 chromosome consolidation in poly-synthetic strains. Another "bug" was discovered through proteomic analysis, associated with alteration of the HIS2 transcription start due to transfer RNA deletion and loxPsym site insertion. Despite extensive genetic alterations across 6% of the genome, no major global changes were detected in the poly-synthetic strain "omics" analyses. This work sets the stage for completion of a designer, synthetic eukaryotic genome.
PMID: 28280154
ISSN: 1095-9203
CID: 2476892

"Perfect" designer chromosome V and behavior of a ring derivative

Xie, Ze-Xiong; Li, Bing-Zhi; Mitchell, Leslie A; Wu, Yi; Qi, Xin; Jin, Zhu; Jia, Bin; Wang, Xia; Zeng, Bo-Xuan; Liu, Hui-Min; Wu, Xiao-Le; Feng, Qi; Zhang, Wen-Zheng; Liu, Wei; Ding, Ming-Zhu; Li, Xia; Zhao, Guang-Rong; Qiao, Jian-Jun; Cheng, Jing-Sheng; Zhao, Meng; Kuang, Zheng; Wang, Xuya; Martin, J Andrew; Stracquadanio, Giovanni; Yang, Kun; Bai, Xue; Zhao, Juan; Hu, Meng-Long; Lin, Qiu-Hui; Zhang, Wen-Qian; Shen, Ming-Hua; Chen, Si; Su, Wan; Wang, En-Xu; Guo, Rui; Zhai, Fang; Guo, Xue-Jiao; Du, Hao-Xing; Zhu, Jia-Qing; Song, Tian-Qing; Dai, Jun-Jun; Li, Fei-Fei; Jiang, Guo-Zhen; Han, Shi-Lei; Liu, Shi-Yang; Yu, Zhi-Chao; Yang, Xiao-Na; Chen, Ken; Hu, Cheng; Li, Da-Shuai; Jia, Nan; Liu, Yue; Wang, Lin-Ting; Wang, Su; Wei, Xiao-Tong; Fu, Mei-Qing; Qu, Lan-Meng; Xin, Si-Yu; Liu, Ting; Tian, Kai-Ren; Li, Xue-Nan; Zhang, Jin-Hua; Song, Li-Xiang; Liu, Jin-Gui; Lv, Jia-Fei; Xu, Hang; Tao, Ran; Wang, Yan; Zhang, Ting-Ting; Deng, Ye-Xuan; Wang, Yi-Ran; Li, Ting; Ye, Guang-Xin; Xu, Xiao-Ran; Xia, Zheng-Bao; Zhang, Wei; Yang, Shi-Lan; Liu, Yi-Lin; Ding, Wen-Qi; Liu, Zhen-Ning; Zhu, Jun-Qi; Liu, Ning-Zhi; Walker, Roy; Luo, Yisha; Wang, Yun; Shen, Yue; Yang, Huanming; Cai, Yizhi; Ma, Ping-Sheng; Zhang, Chun-Ting; Bader, Joel S; Boeke, Jef D; Yuan, Ying-Jin
Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024-base pair chromosome synV in the "Build-A-Genome China" course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.
PMID: 28280151
ISSN: 1095-9203
CID: 3150152

Design of a synthetic yeast genome

Richardson, Sarah M; Mitchell, Leslie A; Stracquadanio, Giovanni; Yang, Kun; Dymond, Jessica S; DiCarlo, James E; Lee, Dongwon; Huang, Cheng Lai Victor; Chandrasegaran, Srinivasan; Cai, Yizhi; Boeke, Jef D; Bader, Joel S
We describe complete design of a synthetic eukaryotic genome, Sc2.0, a highly modified Saccharomyces cerevisiae genome reduced in size by nearly 8%, with 1.1 megabases of the synthetic genome deleted, inserted, or altered. Sc2.0 chromosome design was implemented with BioStudio, an open-source framework developed for eukaryotic genome design, which coordinates design modifications from nucleotide to genome scales and enforces version control to systematically track edits. To achieve complete Sc2.0 genome synthesis, individual synthetic chromosomes built by Sc2.0 Consortium teams around the world will be consolidated into a single strain by "endoreduplication intercross." Chemically synthesized genomes like Sc2.0 are fully customizable and allow experimentalists to ask otherwise intractable questions about chromosome structure, function, and evolution with a bottom-up design strategy.
PMID: 28280199
ISSN: 1095-9203
CID: 2477422

Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome

Shen, Yue; Wang, Yun; Chen, Tai; Gao, Feng; Gong, Jianhui; Abramczyk, Dariusz; Walker, Roy; Zhao, Hongcui; Chen, Shihong; Liu, Wei; Luo, Yisha; Muller, Carolin A; Paul-Dubois-Taine, Adrien; Alver, Bonnie; Stracquadanio, Giovanni; Mitchell, Leslie A; Luo, Zhouqing; Fan, Yanqun; Zhou, Baojin; Wen, Bo; Tan, Fengji; Wang, Yujia; Zi, Jin; Xie, Zexiong; Li, Bingzhi; Yang, Kun; Richardson, Sarah M; Jiang, Hui; French, Christopher E; Nieduszynski, Conrad A; Koszul, Romain; Marston, Adele L; Yuan, Yingjin; Wang, Jian; Bader, Joel S; Dai, Junbiao; Boeke, Jef D; Xu, Xun; Cai, Yizhi; Yang, Huanming
Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution), we targeted and debugged the origin of a growth defect at 37 degrees C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain.
PMCID:5390853
PMID: 28280153
ISSN: 1095-9203
CID: 2477412

Bug mapping and fitness testing of chemically synthesized chromosome X

Wu, Yi; Li, Bing-Zhi; Zhao, Meng; Mitchell, Leslie A; Xie, Ze-Xiong; Lin, Qiu-Hui; Wang, Xia; Xiao, Wen-Hai; Wang, Ying; Zhou, Xiao; Liu, Hong; Li, Xia; Ding, Ming-Zhu; Liu, Duo; Zhang, Lu; Liu, Bao-Li; Wu, Xiao-Le; Li, Fei-Fei; Dong, Xiu-Tao; Jia, Bin; Zhang, Wen-Zheng; Jiang, Guo-Zhen; Liu, Yue; Bai, Xue; Song, Tian-Qing; Chen, Yan; Zhou, Si-Jie; Zhu, Rui-Ying; Gao, Feng; Kuang, Zheng; Wang, Xuya; Shen, Michael; Yang, Kun; Stracquadanio, Giovanni; Richardson, Sarah M; Lin, Yicong; Wang, Lihui; Walker, Roy; Luo, Yisha; Ma, Ping-Sheng; Yang, Huanming; Cai, Yizhi; Dai, Junbiao; Bader, Joel S; Boeke, Jef D; Yuan, Ying-Jin
Debugging a genome sequence is imperative for successfully building a synthetic genome. As part of the effort to build a designer eukaryotic genome, yeast synthetic chromosome X (synX), designed as 707,459 base pairs, was synthesized chemically. SynX exhibited good fitness under a wide variety of conditions. A highly efficient mapping strategy called pooled PCRTag mapping (PoPM), which can be generalized to any watermarked synthetic chromosome, was developed to identify genetic alterations that affect cell fitness ("bugs"). A series of bugs were corrected that included a large region bearing complex amplifications, a growth defect mapping to a recoded sequence in FIP1, and a loxPsym site affecting promoter function of ATP2 PoPM is a powerful tool for synthetic yeast genome debugging and an efficient strategy for phenotype-genotype mapping.
PMCID:5679077
PMID: 28280152
ISSN: 1095-9203
CID: 2477402

3D organization of synthetic and scrambled chromosomes

Mercy, Guillaume; Mozziconacci, Julien; Scolari, Vittore F; Yang, Kun; Zhao, Guanghou; Thierry, Agnes; Luo, Yisha; Mitchell, Leslie A; Shen, Michael; Shen, Yue; Walker, Roy; Zhang, Weimin; Wu, Yi; Xie, Ze-Xiong; Luo, Zhouqing; Cai, Yizhi; Dai, Junbiao; Yang, Huanming; Yuan, Ying-Jin; Boeke, Jef D; Bader, Joel S; Muller, Heloise; Koszul, Romain
Although the design of the synthetic yeast genome Sc2.0 is highly conservative with respect to gene content, the deletion of several classes of repeated sequences and the introduction of thousands of designer changes may affect genome organization and potentially alter cellular functions. We report here the Hi-C-determined three-dimensional (3D) conformations of Sc2.0 chromosomes. The absence of repeats leads to a smoother contact pattern and more precisely tractable chromosome conformations, and the large-scale genomic organization is globally unaffected by the presence of synthetic chromosome(s). Two exceptions are synIII, which lacks the silent mating-type cassettes, and synXII, specifically when the ribosomal DNA is moved to another chromosome. We also exploit the contact maps to detect rearrangements induced in SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) strains.
PMCID:5679085
PMID: 28280150
ISSN: 1095-9203
CID: 2477382