Searched for: in-biosketch:yes
person:carltj01
Immune responses to Plasmodium vivax pre-erythrocytic stage antigens in naturally exposed Duffy-negative humans: a potential model for identification of liver-stage antigens
Wang, Ruobing; Arevalo-Herrera, Myriam; Gardner, Malcolm J; Bonelo, Anilza; Carlton, Jane M; Gomez, Andres; Vera, Omaira; Soto, Liliana; Vergara, Juana; Bidwell, Shelby L; Domingo, Alexander; Fraser, Claire M; Herrera, Socrates
Duffy antigen is the receptor used by Plasmodium vivax to invade erythrocytes. Consequently, individuals lacking Duffy antigen [Fy(-)] do not develop blood-stage infections. We hypothesized that naturally exposed Fy(-) humans may develop immune responses mainly to pre-erythrocytic stages and could be used to study acquired immunity to P. vivax and to identify liver-stage antigens. We report here that antibody and IFN-gamma responses to known sporozoite antigens were significantly induced by natural exposure in Fy(-) humans, whereas responses to blood-stage antigens were significantly induced in Fy(+) humans. IFN-gamma responses to sporozoite antigens were lower in Fy(+) than in Fy(-) humans, indicating that in Fy(+) humans blood-stage infections may have suppressed T cell responses to pre-erythrocytic stages. We evaluated the immune responses to 18 novel P. vivax homologs of P. falciparum sporozoite proteins identified from the P. vivax genome sequence. Eight proteins recalled IFN-gamma responses in P. vivax-exposed but not in unexposed individuals. Of these, 3 antigens elicited IFN-gamma responses in Fy(-) but not in Fy(+) individuals. These results suggest that differential immune responses observed in naturally exposed Fy(-) and Fy(+) individuals can be exploited to identify P. vivax stage-specific antigens
PMID: 15864779
ISSN: 0014-2980
CID: 64347
Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis
Vanacova, Stepanka; Yan, Weihong; Carlton, Jane M; Johnson, Patricia J
Eukaryotes have evolved elaborate splicing mechanisms to remove introns that would otherwise destroy the protein-coding capacity of genes. Nuclear premRNA splicing requires sequence motifs in the intron and is mediated by a ribonucleoprotein complex, the spliceosome. Here we demonstrate the presence of a splicing apparatus in the protist Trichomonas vaginalis and show that RNA motifs found in yeast and metazoan introns are required for splicing. We also describe the first introns in this deep-branching lineage. The positions of these introns are often conserved in orthologous genes, indicating they were present in a common ancestor of trichomonads, yeast, and metazoa. All examined T. vaginalis introns have a highly conserved 12-nt 3' splice-site motif that encompasses the branch point and is necessary for splicing. This motif is also found in the only described intron in a gene from another deep-branching eukaryote, Giardia intestinalis. These studies demonstrate the conservation of intron splicing signals across large evolutionary distances, reveal unexpected motif conservation in deep-branching lineages that suggest a simplified mechanism of splicing in primitive unicellular eukaryotes, and support the presence of introns in the earliest eukaryote
PMCID:554003
PMID: 15764705
ISSN: 0027-8424
CID: 64349
A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses
Hall, Neil; Karras, Marianna; Raine, J Dale; Carlton, Jane M; Kooij, Taco W A; Berriman, Matthew; Florens, Laurence; Janssen, Christoph S; Pain, Arnab; Christophides, Georges K; James, Keith; Rutherford, Kim; Harris, Barbara; Harris, David; Churcher, Carol; Quail, Michael A; Ormond, Doug; Doggett, Jon; Trueman, Holly E; Mendoza, Jacqui; Bidwell, Shelby L; Rajandream, Marie-Adele; Carucci, Daniel J; Yates, John R 3rd; Kafatos, Fotis C; Janse, Chris J; Barrell, Bart; Turner, C Michael R; Waters, Andrew P; Sinden, Robert E
Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process
PMID: 15637271
ISSN: 1095-9203
CID: 64350
The genome of model malaria parasites, and comparative genomics
Carlton, Jane; Silva, Joana; Hall, Neil
The field of comparative genomics of malaria parasites has recently come of age with the completion of the whole genome sequences of the human malaria parasite Plasmodium falciparum and a rodent malaria model, Plasmodium yoelii yoelii. With several other genome sequencing projects of different model and human malaria parasite species underway, comparing genomes from multiple species has necessitated the development of improved informatics tools and analyses. Results from initial comparative analyses reveal striking conservation of gene synteny between malaria species within conserved chromosome cores, in contrast to reduced homology within subtelomeric regions, in line with previous findings on a smaller scale. Genes that elicit a host immune response are frequently found to be species-specific, although a large variant multigene family is common to many rodent malaria species and Plasmodium vivax. Sequence alignment of syntenic regions from multiple species has revealed the similarity between species in coding regions to be high relative to non-coding regions, and phylogenetic footprinting studies promise to reveal conserved motifs in the latter. Comparison of non-synonymous substitution rates between orthologous genes is proving a powerful technique for identifying genes under selection pressure, and may be useful for vaccine design. This is a stimulating time for comparative genomics of model and human malaria parasites, which promises to produce useful results for the development of antimalarial drugs and vaccines
PMID: 15580778
ISSN: 1467-3037
CID: 64352
A potentially functional mariner transposable element in the protist Trichomonas vaginalis
Silva, Joana C; Bastida, Felix; Bidwell, Shelby L; Johnson, Patricia J; Carlton, Jane M
Mariner transposable elements encoding a D,D34D motif-bearing transposase are characterized by their pervasiveness among, and exclusivity to, animal phyla. To date, several hundred sequences have been obtained from taxa ranging from cnidarians to humans, only two of which are known to be functional. Related transposons have been identified in plants and fungi, but their absence among protists is noticeable. Here, we identify and characterize Tvmar1, the first representative of the mariner family to be found in a species of protist, the human parasite Trichomonas vaginalis. This is the first D,D34D element to be found outside the animal kingdom, and its inclusion in the mariner family is supported by both structural and phylogenetic analyses. Remarkably, Tvmar1 has all the hallmarks of a functional element and has recently expanded to several hundred copies in the genome of T. vaginalis. Our results show that a new potentially active mariner has been found that belongs to a distinct mariner lineage and has successfully invaded a nonanimal, single-celled organism. The considerable genetic distance between Tvmar1 and other mariners may have valuable implications for the design of new, high-efficiency vectors to be used in transfection studies in protists
PMCID:1406841
PMID: 15371525
ISSN: 0737-4038
CID: 64354
Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment
Moran, Mary Ann; Buchan, Alison; Gonzalez, Jose M; Heidelberg, John F; Whitman, William B; Kiene, Ronald P; Henriksen, James R; King, Gary M; Belas, Robert; Fuqua, Clay; Brinkac, Lauren; Lewis, Matt; Johri, Shivani; Weaver, Bruce; Pai, Grace; Eisen, Jonathan A; Rahe, Elisha; Sheldon, Wade M; Ye, Wenying; Miller, Todd R; Carlton, Jane; Rasko, David A; Paulsen, Ian T; Ren, Qinghu; Daugherty, Sean C; Deboy, Robert T; Dodson, Robert J; Durkin, A Scott; Madupu, Ramana; Nelson, William C; Sullivan, Steven A; Rosovitz, M J; Haft, Daniel H; Selengut, Jeremy; Ward, Naomi
Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise approximately 10-20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean
PMID: 15602564
ISSN: 1476-4687
CID: 64351
Gene synteny and chloroquine resistance in Plasmodium chabaudi
Hunt, Paul; Martinelli, Axel; Fawcett, Richard; Carlton, Jane; Carter, Richard; Walliker, David
Chloroquine resistance in the rodent malaria parasite Plasmodium chabaudi has been shown to be caused by a gene on chromosome 11, and is not linked to orthologues of the Plasmodium falciparum chloroquine resistance transporter (pfcrt) or Pgh-1 (pfmdr1) genes. In the current work, the progeny of crosses between chloroquine-resistant and sensitive clones of P. chabaudi have been analysed for the inheritance of 658 AFLP markers. Markers linked to the chloroquine responses of the progeny, including two which are completely linked, have been genetically mapped, sequenced and their homologues, or closely linked loci, identified in P. falciparum. The chromosome 11 markers most closely linked to chloroquine resistance in P. chabaudi map to loci which are also closely linked in P. falciparum, although in two linkage groups on chromosomes 6 and 13 of this species. The P. falciparum orthologue of the gene conferring chloroquine resistance in P. chabaudi is predicted to lie within a 250 kb region of P. falciparum chromosome 6, containing approximately 50 genes. The genetic order of the markers in P. chabaudi is co-linear with the physical linkage represented in the P. falciparum genome database. The findings provide evidence for extensive conservation of synteny between the two species
PMID: 15478795
ISSN: 0166-6851
CID: 64353
Mind the gap: bridging the divide between clinical and molecular studies of the trichomonads
Lyons, Emily J; Carlton, Jane M
PMID: 15105016
ISSN: 1471-4922
CID: 64355
Novel antigen identification method for discovery of protective malaria antigens by rapid testing of DNA vaccines encoding exons from the parasite genome
Haddad, Diana; Bilcikova, Erika; Witney, Adam A; Carlton, Jane M; White, Charles E; Blair, Peter L; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C; Carucci, Daniel J; Weiss, Walter R
We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens
PMCID:356014
PMID: 14977966
ISSN: 0019-9567
CID: 64356
Chloroquine resistance in Plasmodium chabaudi: are chloroquine-resistance transporter (crt) and multi-drug resistance (mdr1) orthologues involved?
Hunt, Paul; Cravo, Pedro V L; Donleavy, Paul; Carlton, Jane M-R; Walliker, David
We have identified in the rodent malaria parasite Plasmodium chabaudi orthologues of two Plasmodium falciparum genes, pfcrt and pfmdr1 which have been implicated as determinants of chloroquine resistance in the latter species. The sequences of the P. chabaudi genes, denoted, respectively, pccg10 and pcmdr1, were first determined in the chloroquine-sensitive clone AS, and found to be highly similar to those of P. falciparum. For pccg10, there was a nucleotide sequence identity of 68.6% and amino acid sequence identity of 75.1% within the predicted coding region. For pcmdr1, the sequence identities were 75.0% (nucleotide) and 78.1% (amino acid). The sequences of the genes were then determined in three P. chabaudi clones selected from clone AS which possessed three different levels of resistance to chloroquine. The sequences of both genes in all mutants were found to be identical to those of the sensitive AS from which they had been derived. Polymorphic sites were found in both genes between the AS clones and a genetically unrelated sensitive clone AJ. Analysis of genetic crosses between AJ and resistant AS clones showed no linkage between inherited parental alleles of pccrt and pcmdr1 and drug responses of the cloned progeny. This showed that neither of these genes, nor genes closely linked to them, were determinants of the chloroquine resistance in the P. chabaudi mutants
PMID: 14668009
ISSN: 0166-6851
CID: 64357