Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:id460

Total Results:

114


Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies

Abdel-Wahab, Omar; Mullally, Ann; Hedvat, Cyrus; Garcia-Manero, Guillermo; Patel, Jay; Wadleigh, Martha; Malinge, Sebastien; Yao, JinJuan; Kilpivaara, Outi; Bhat, Rukhmi; Huberman, Kety; Thomas, Sabrena; Dolgalev, Igor; Heguy, Adriana; Paietta, Elisabeth; Le Beau, Michelle M; Beran, Miloslav; Tallman, Martin S; Ebert, Benjamin L; Kantarjian, Hagop M; Stone, Richard M; Gilliland, D Gary; Crispino, John D; Levine, Ross L
Disease alleles that activate signal transduction are common in myeloid malignancies; however, there are additional unidentified mutations that contribute to myeloid transformation. Based on the recent identification of TET2 mutations, we evaluated the mutational status of TET1, TET2, and TET3 in myeloproliferative neoplasms (MPNs), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Sequencing of TET2 in 408 paired tumor/normal samples distinguished between 68 somatic mutations and 6 novel single nucleotide polymorphisms and identified TET2 mutations in MPN (27 of 354, 7.6%), CMML (29 of 69, 42%), AML (11 of 91, 12%), and M7 AML (1 of 28, 3.6%) samples. We did not identify somatic TET1 or TET3 mutations or TET2 promoter hypermethylation in MPNs. TET2 mutations did not cluster in genetically defined MPN, CMML, or AML subsets but were associated with decreased overall survival in AML (P = .029). These data indicate that TET2 mutations are observed in different myeloid malignancies and may be important in AML prognosis.
PMCID:2710942
PMID: 19420352
ISSN: 0006-4971
CID: 306992

Genomic complexity and BRAF/MEK-dependence in V600E BRAF mutant melanoma [Meeting Abstract]

Xing, Feng; Persaud, Yogindra; Pratilas, Christine; Janakiraman, Manickam; She, Qing-Bai; Liu, Cailian; Dolgalev, Igor; Heguy, Adriana; Wolchok, Jedd; Cobrinik, David; Houghton, Alan; Taylor, Barry; Rosen, Neal; Solit, David
ISI:000216412800341
ISSN: 1535-7163
CID: 5236552

Variability in small airway epithelial gene expression among normal smokers

Ammous, Zeinab; Hackett, Neil R; Butler, Marcus W; Raman, Tina; Dolgalev, Igor; O'Connor, Timothy P; Harvey, Ben-Gary; Crystal, Ronald G
BACKGROUND: Despite overwhelming data that cigarette smoking causes COPD, only a minority of long-term smokers are affected, strongly suggesting that genetic factors modify susceptibility to this disease. We hypothesized that individual variations exist in the response to cigarette smoking, with variability among smokers in expression levels of protective/susceptibility genes. METHODS: Affymetrix arrays and quantitative polymerase chain reaction were used to assess the variability of gene expression in the small airway epithelium obtained by fiberoptic bronchoscopy of 18 normal nonsmokers, 18 normal smokers, and 18 smokers with COPD. RESULTS: We identified 201 probe sets representing 152 smoking-responsive genes that were significantly up-regulated or down-regulated, and assessed the coefficient of variation in expression levels among the study population. Variation was a reproducible property of each gene as assessed by different microarray probe sets and real-time polymerase chain reaction, and was observed in both normal smokers and smokers with COPD. Greater individual variability was found in smokers with COPD than in normal smokers. The majority of these highly variable smoking-responsive genes were in the functional categories of signal transduction, xenobiotic degradation, metabolism, transport, oxidant related, and transcription. A similar pattern of the same highly variable genes was observed in an independent data set. CONCLUSIONS: We propose that genetic diversity is likely within this subset of genes, with highly variable individual-to-individual responses of the small airway epithelium to smoking, and that this subset of genes represents putative candidates for assessment of susceptibility/protection from disease in future gene-based epidemiologic studies of smokers' risk for COPD.
PMCID:3632367
PMID: 18339782
ISSN: 0012-3692
CID: 2363902

Responses of the human airway epithelium transcriptome to in vivo injury

Heguy, Adriana; Harvey, Ben-Gary; Leopold, Philip L; Dolgalev, Igor; Raman, Tina; Crystal, Ronald G
To identify genes participating in human airway epithelial repair, we used bronchoscopy and brushing to denude the airway epithelium of healthy individuals, sequentially sampled the same region 7 and 14 days later, and assessed gene expression by Affymetrix microarrays with TaqMan RT-PCR confirmation. Histologically, the injured area was completely covered by a partially redifferentiated epithelial layer after 7 days; by 14 days the airway epithelium was very similar to the uninjured state. At day 7 compared with resting epithelium, there were substantial differences in gene expression pattern, with a distinctive airway epithelial "repair transcriptome" of actively proliferating cells in the process of redifferentiation. The repair transcriptome at 7 days was dominated by cell cycle, signal transduction, metabolism and transport, and transcription genes. Interestingly, the majority of differentially expressed cell cycle genes belonged to the G2 and M phases, suggesting that the proliferating cells were relatively synchronized 1 wk following injury. At 14 days postinjury, the expression profile was similar to that of resting airway epithelium. These observations provide a baseline of the functional gene categories participating in the process of normal human airway epithelial repair that can be used in future studies of injury and repair in airway epithelial diseases.
PMID: 17164391
ISSN: 1094-8341
CID: 307032