Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:koides01

Total Results:

186


Identification of a tetratricopeptide repeat-like domain in the nicastrin subunit of gamma-secretase using synthetic antibodies

Zhang, Xulun; Hoey, Robert J; Lin, Guoqing; Koide, Akiko; Leung, Brenda; Ahn, Kwangwook; Dolios, Georgia; Paduch, Marcin; Ikeuchi, Takeshi; Wang, Rong; Li, Yue-Ming; Koide, Shohei; Sisodia, Sangram S
The gamma-secretase complex, composed of presenilin, anterior-pharynx-defective 1, nicastrin, and presenilin enhancer 2, catalyzes the intramembranous processing of a wide variety of type I membrane proteins, including amyloid precursor protein (APP) and Notch. Earlier studies have revealed that nicastrin, a type I membrane-anchored glycoprotein, plays a role in gamma-secretase assembly and trafficking and has been proposed to bind substrates. To gain more insights regarding nicastrin structure and function, we generated a conformation-specific synthetic antibody and used it as a molecular probe to map functional domains within nicastrin ectodomain. The antibody bound to a conformational epitope within a nicastrin segment encompassing residues 245-630 and inhibited the processing of APP and Notch substrates in in vitro gamma-secretase activity assays, suggesting that a functional domain pertinent to gamma-secretase activity resides within this region. Epitope mapping and database searches revealed the presence of a structured segment, located downstream of the previously identified DAP domain (DYIGS and peptidase; residues 261-502), that is homologous to a tetratricopeptide repeat (TPR) domain commonly involved in peptide recognition. Mutagenesis analyses within the predicted TPR-like domain showed that disruption of the signature helical structure resulted in the loss of gamma-secretase activity but not the assembly of the gamma-secretase and that Leu571 within the TPR-like domain plays an important role in mediating substrate binding. Taken together, these studies offer provocative insights pertaining to the structural basis for nicastrin function as a "substrate receptor" within the gamma-secretase complex.
PMCID:3365189
PMID: 22586122
ISSN: 1091-6490
CID: 2004962

A delicate interplay of structure, dynamics, and thermodynamics for function: a high pressure NMR study of outer surface protein A

Kitahara, Ryo; Simorellis, Alana K; Hata, Kazumi; Maeno, Akihiro; Yokoyama, Shigeyuki; Koide, Shohei; Akasaka, Kazuyuki
Outer surface protein A (OspA) is a crucial protein in the infection of Borrelia burgdorferi causing Lyme disease. We studied conformational fluctuations of OspA with high-pressure (15)N/(1)H two-dimensional NMR along with high-pressure fluorescence spectroscopy. We found evidence within folded, native OspA for rapid local fluctuations of the polypeptide backbone in the nonglobular single layer beta-sheet connecting the N- and C-terminal domains with tau << ms, which may give the two domains certain independence in mobility and thermodynamic stability. Furthermore, we found that folded, native OspA is in equilibrium (tau >> ms) with a minor conformer I, which is almost fully disordered and hydrated for the entire C-terminal part of the polypeptide chain from beta8 to the C-terminus. Conformer I is characterized with DeltaG(0) = 32 +/- 9 kJ/mol and DeltaV(0) = -140 +/- 40 mL/mol, populating only approximately 0.001% at 40 degrees C at 0.1 MPa, pH 5.9. Because in the folded conformer the receptor binding epitope of OspA is buried in the C-terminal domain, its transition into conformer I under in vivo conditions may be critical for the infection of B. burgdorferi. The formation and stability of the peculiar conformer I are apparently supported by a large packing defect or cavity located in the C-terminal domain.
PMCID:3283806
PMID: 22385863
ISSN: 1542-0086
CID: 2004972

Teaching an old scaffold new tricks: monobodies constructed using alternative surfaces of the FN3 scaffold

Koide, Akiko; Wojcik, John; Gilbreth, Ryan N; Hoey, Robert J; Koide, Shohei
The fibronectin type III domain (FN3) has become one of the most widely used non-antibody scaffolds for generating new binding proteins. Because of its structural homology to the immunoglobulin domain, combinatorial libraries of FN3 designed to date have primarily focused on introducing amino acid diversity into three loops that are equivalent to antibody complementarity-determining regions. Here, we report an FN3 library that utilizes alternative positions for presenting amino acid diversity. We diversified positions on a beta-sheet and surface loops that together form a concave surface. The new library produced binding proteins (termed "monobodies") to multiple target proteins, generally with similar efficacy as the original, loop-focused library. The crystal structure of a monobody generated from the new library in complex with its target, the Abl SH2 domain, revealed that a concave surface of the monobody, as intended in our design, bound to a convex surface of the target with the interface area being among the largest of published structures of monobody-target complexes. This mode of interaction differs from a common binding mode for single-domain antibodies and antibody mimics in which recognition loops recognize clefts in targets. Together, this work illustrates the utilization of different surfaces of a single immunoglobulin-like scaffold to generate binding proteins with distinct characteristics.
PMCID:3260337
PMID: 22198408
ISSN: 1089-8638
CID: 2004992

T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment

Miller, Keith R; Koide, Akiko; Leung, Brenda; Fitzsimmons, Jonathan; Yoder, Bryan; Yuan, Hong; Jay, Michael; Sidhu, Sachdev S; Koide, Shohei; Collins, Edward J
A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR) binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC) molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab) library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu) peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2), with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with (64)Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT) imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.
PMCID:3423377
PMID: 22916301
ISSN: 1932-6203
CID: 2004932

Affinity maturation of single-domain antibodies by yeast surface display

Koide, Akiko; Koide, Shohei
Although single-domain antibodies derived from libraries prepared either after animal immunization or naive animals generally exhibit reasonable affinity, it is often desirable to further improve their affinity. This chapter describes protocols for improving the affinity of single-domain antibodies using quantitative library sorting by yeast surface display. An example is included where we also exploit a complementary strength of phage display in generating larger sequence diversity prior to library sorting with yeast surface display.
PMID: 22886267
ISSN: 1940-6029
CID: 2004942

Target-binding proteins based on the 10th human fibronectin type III domain ((1)(0)Fn3)

Koide, Shohei; Koide, Akiko; Lipovsek, Dasa
We describe concepts and methods for generating a family of engineered target-binding proteins designed on the scaffold of the 10th human fibronectin type III domain ((10)Fn3), an extremely stable, single-domain protein with an immunoglobulin-like fold but lacking disulfide bonds. Large libraries of possible target-binding proteins can be constructed on the (10)Fn3 scaffold by diversifying the sequence and length of its surface loops, which are structurally analogous to antibody complementarity-determining regions. Target-binding proteins with high affinity and specificity are selected from (10)Fn3-based libraries using in vitro evolution technologies such as phage display, mRNA display, or yeast-surface display. (10)Fn3-based target-binding proteins have binding properties comparable to those of antibodies, but they are smaller, simpler in architecture, and more user-friendly; as a consequence, these proteins are excellent building blocks for the construction of multidomain, multifunctional chains. The ease of engineering and robust properties of (10)Fn3-based target-binding proteins have been validated by multiple independent academic and industrial groups. In addition to performing well as specific in vitro detection reagents and research tools, (10)Fn3-based binding proteins are being developed as therapeutics, with the most advanced candidate currently in Phase II clinical trials.
PMID: 22230568
ISSN: 1557-7988
CID: 2004982

Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis

Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M; Gish, Gerald D; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio
Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.
PMCID:3202669
PMID: 22000011
ISSN: 1097-4172
CID: 2005002

Mechanism of activation gating in the full-length KcsA K+ channel

Uysal, Serdar; Cuello, Luis G; Cortes, D Marien; Koide, Shohei; Kossiakoff, Anthony A; Perozo, Eduardo
Using a constitutively active channel mutant, we solved the structure of full-length KcsA in the open conformation at 3.9 A. The structure reveals that the activation gate expands about 20 A, exerting a strain on the bulge helices in the C-terminal domain and generating side windows large enough to accommodate hydrated K(+) ions. Functional and spectroscopic analysis of the gating transition provides direct insight into the allosteric coupling between the activation gate and the selectivity filter. We show that the movement of the inner gate helix is transmitted to the C-terminus as a straightforward expansion, leading to an upward movement and the insertion of the top third of the bulge helix into the membrane. We suggest that by limiting the extent to which the inner gate can open, the cytoplasmic domain also modulates the level of inactivation occurring at the selectivity filter.
PMCID:3141920
PMID: 21730186
ISSN: 1091-6490
CID: 2005012

Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design

Gilbreth, Ryan N; Truong, Khue; Madu, Ikenna; Koide, Akiko; Wojcik, John B; Li, Nan-Sheng; Piccirilli, Joseph A; Chen, Yuan; Koide, Shohei
Discriminating closely related molecules remains a major challenge in the engineering of binding proteins and inhibitors. Here we report the development of highly selective inhibitors of small ubiquitin-related modifier (SUMO) family proteins. SUMOylation is involved in the regulation of diverse cellular processes. Functional differences between two major SUMO isoforms in humans, SUMO1 and SUMO2/3, are thought to arise from distinct interactions mediated by each isoform with other proteins containing SUMO-interacting motifs (SIMs). However, the roles of such isoform-specific interactions are largely uncharacterized due in part to the difficulty in generating high-affinity, isoform-specific inhibitors of SUMO/SIM interactions. We first determined the crystal structure of a "monobody," a designed binding protein based on the fibronectin type III scaffold, bound to the yeast homolog of SUMO. This structure illustrated a mechanism by which monobodies bind to the highly conserved SIM-binding site while discriminating individual SUMO isoforms. Based on this structure, we designed a SUMO-targeted library from which we obtained monobodies that bound to the SIM-binding site of human SUMO1 with K(d) values of approximately 100 nM but bound to SUMO2 400 times more weakly. The monobodies inhibited SUMO1/SIM interactions and, unexpectedly, also inhibited SUMO1 conjugation. These high-affinity and isoform-specific inhibitors will enhance mechanistic and cellular investigations of SUMO biology.
PMCID:3093456
PMID: 21518904
ISSN: 1091-6490
CID: 2005022

A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination

Koldobskaya, Yelena; Duguid, Erica M; Shechner, David M; Suslov, Nikolai B; Ye, Jingdong; Sidhu, Sachdev S; Bartel, David P; Koide, Shohei; Kossiakoff, Anthony A; Piccirilli, Joseph A
RNA crystallization and phasing represent major bottlenecks in RNA structure determination. Seeking to exploit antibody fragments as RNA crystallization chaperones, we have used an arginine-enriched synthetic Fab library displayed on phage to obtain Fabs against the class I ligase ribozyme. We solved the structure of a Fab-ligase complex at 3.1-A resolution using molecular replacement with Fab coordinates, confirming the ribozyme architecture and revealing the chaperone's role in RNA recognition and crystal contacts. The epitope resides in the GAAACAC sequence that caps the P5 helix, and this sequence retains high-affinity Fab binding within the context of other structured RNAs. This portable epitope provides a new RNA crystallization chaperone system that easily can be screened in parallel to the U1A RNA-binding protein, with the advantages of a smaller loop and Fabs' high molecular weight, large surface area and phasing power.
PMCID:3058332
PMID: 21151117
ISSN: 1545-9985
CID: 2005032