Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:scharh01

Total Results:

214


A role for hilar cells in pattern separation in the dentate gyrus: A computational approach

Myers, Catherine E; Scharfman, Helen E
We present a simple computational model of the dentate gyrus to evaluate the hypothesis that pattern separation, defined as the ability to transform a set of similar input patterns into a less-similar set of output patterns, is dynamically regulated by hilar neurons. Prior models of the dentate gyrus have generally fallen into two categories: simplified models that have focused on a single granule cell layer and its ability to perform pattern separation, and large-scale and biophysically realistic models of dentate gyrus, which include hilar cells, but which have not specifically addressed pattern separation. The present model begins to bridge this gap. The model includes two of the major subtypes of hilar cells: excitatory hilar mossy cells and inhibitory hilar interneurons that receive input from and project to the perforant path terminal zone (HIPP cells). In the model, mossy cells and HIPP cells provide a mechanism for dynamic regulation of pattern separation, allowing the system to upregulate and downregulate pattern separation in response to environmental and task demands. Specifically, pattern separation in the model can be strongly decreased by decreasing mossy cell function and/or by increasing HIPP cell function; pattern separation can be increased by the opposite manipulations. We propose that hilar cells may similarly mediate dynamic regulation of pattern separation in the dentate gyrus in vivo, not only because of their connectivity within the dentate gyrus, but also because of their modulation by brainstem inputs and by the axons that 'backproject' from area CA3 pyramidal cells. (c) 2008 Wiley-Liss, Inc
PMCID:2723776
PMID: 18958849
ISSN: 1098-1063
CID: 94640

THE SPATIAL RELATIONSHIP OF HIPPOCAMPAL INTERICTAL DISCHARGES AND HIGH FREQUENCY OSCILLATIONS IN VIVO IN A RAT MODEL OF TEMPORAL LOBE EPILEPSY [Meeting Abstract]

Friedman, D; Schevon, CA; Emerson, RG; Scharfman, H
ISI:000260306600392
ISSN: 0013-9580
CID: 91392

Estrogen-growth factor interactions and their contributions to neurological disorders

Scharfman, Helen E; MacLusky, Neil J
Estrogen has diverse and powerful effects in the brain, including actions on neurons, glia, and the vasculature. It is not surprising, therefore, that there are many changes in the female brain as serum estradiol levels rise and fall during the normal ovarian cycle. At times of life when estradiol levels change dramatically, such as puberty, postpartum, or menopause, there also are dramatic changes in the central nervous system. Changes that occur because of fluctuations in serum estrogen levels are potentially relevant to neurological disorders because symptoms often vary with the time of the ovarian cycle. Moreover, neurological disorders (eg, seizures and migraine) often increase in frequency in women when estradiol levels change. In this review, the contribution of 2 growth factors targeted by estrogen, the neurotrophin brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), will be discussed. Estrogen-sensitive response elements are present on the genes for both BDNF and VEGF, and they are potent modulators of neuronal, glial, and vascular function, making them logical candidates to mediate the multitude of effects of estrogen. In addition, BDNF induces neuropeptide Y, which has diverse actions that are relevant to estrogen action and to the same neurological disorders
PMCID:2729400
PMID: 18700946
ISSN: 1526-4610
CID: 93351

Effects of multiparity on recognition memory, monoaminergic neurotransmitters, and brain-derived neurotrophic factor (BDNF)

Macbeth, Abbe H; Scharfman, Helen E; Maclusky, Neil J; Gautreaux, Claris; Luine, Victoria N
Recognition memory and anxiety were examined in nulliparous (NP: 0 litters) and multiparous (MP: 5-6 litters) middle-aged female rats (12 months old) to assess possible enduring effects of multiparity at least 3 months after the last litter was weaned. MP females performed significantly better than NP females on the non-spatial memory task, object recognition, and the spatial memory task, object placement. Anxiety as measured on the elevated plus maze did not differ between groups. Monoaminergic activity and levels were measured in prefrontal cortex, CA1 hippocampus, CA3 hippocampus, and olfactory bulb (OB). NP and MP females differed in monoamine concentrations in the OB only, with MP females having significantly greater concentrations of dopamine and metabolite DOPAC, norepinephrine and metabolite MHPG, and the serotonin metabolite 5-HIAA, as compared to NP females. These results indicate a long-term change in OB neurochemistry as a result of multiparity. Brain-derived neurotrophic factor (BDNF) was also measured in hippocampus (CA1, CA3, dentate gyrus) and septum. MP females had higher BDNF levels in both CA1 and septum; as these regions are implicated in memory performance, elevated BDNF may underlie the observed memory task differences. Thus, MP females (experiencing multiple bouts of pregnancy, birth, and pup rearing during the first year of life) displayed enhanced memory task performance but equal anxiety responses, as compared to NP females. These results are consistent with previous studies showing long-term changes in behavioral function in MP, as compared to NP, rats and suggest that alterations in monoamines and a neurotrophin, BDNF, may contribute to the observed behavioral changes
PMCID:2441760
PMID: 17927990
ISSN: 0018-506x
CID: 76101

Modulation of vascular endothelial growth factor (VEGF) expression in motor neurons and its electrophysiological effects

McCloskey, Daniel P; Hintz, Tana M; Scharfman, Helen E
Previous studies have shown that VEGF expression in forebrain increases after experimental manipulations that increase neuronal activity. One question is whether this also occurs in motor neurons. If so, it could be potentially advantageous from a therapeutic perspective, because VEGF prevents motor neuron degeneration. Therefore, we asked whether endogenous VEGF expression in motor neurons could be modulated. We also asked how VEGF exposure would influence motor neurons using electrophysiology. Immunocytochemistry showed that motor neuron VEGF expression increased after a stimulus that increases neuronal and motor activity, i.e., convulsive seizures. The increase in VEGF immunoreactivity occurred in all motor neuron populations that were examined 24h later. This effect was unlikely to be due to seizure-induced toxicity, because silver degeneration stain did not show the typical appearance of a dying or dead neuron. To address the effects of VEGF on motor neuron function, VEGF was applied directly to motor neurons while recording intracellularly, using a brainstem slice preparation. Exposure to exogenous VEGF (200 ng/ml) in normal conditions depressed stimulus-evoked depolarization of hypoglossal motor neurons. There was no detectable effect of VEGF on membrane properties or firing behavior. We suggest that VEGF is upregulated in neurons when they are strongly activated, and VEGF depresses neuronal excitation as a compensatory mechanism. Failure of this mechanism may contribute to diseases that involve a dysregulation of VEGF, excessive excitation of motor neurons, and motor neuron loss, such as amyotrophic lateral sclerosis (ALS)
PMCID:2422999
PMID: 18395608
ISSN: 1873-2747
CID: 94641

Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus

Nicoletti, J N; Shah, S K; McCloskey, D P; Goodman, J H; Elkady, A; Atassi, H; Hylton, D; Rudge, J S; Scharfman, H E; Croll, S D
Vascular endothelial growth factor (VEGF) is a protein factor which has been found to play a significant role in both normal and pathological states. Its role as an angiogenic factor is well-established. More recently, VEGF has been shown to protect neurons from cell death both in vivo and in vitro. While VEGF's potential as a protective factor has been demonstrated in hypoxia-ischemia, in vitro excitotoxicity, and motor neuron degeneration, its role in seizure-induced cell loss has received little attention. A potential role in seizures is suggested by Newton et al.'s [Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E, Duman RS (2003) Gene profile of electroconvulsive seizures: Induction of neurotrophic and angiogenic factors. J Neurosci 23:10841-10851] finding that VEGF mRNA increases in areas of the brain that are susceptible to cell loss after electroconvulsive-shock induced seizures. Because a linear relationship does not always exist between expression of mRNA and protein, we investigated whether VEGF protein expression increased after pilocarpine-induced status epilepticus. In addition, we administered exogenous VEGF in one experiment and blocked endogenous VEGF in another to determine whether VEGF exerts a neuroprotective effect against status epilepticus-induced cell loss in one vulnerable brain region, the rat hippocampus. Our data revealed that VEGF is dramatically up-regulated in neurons and glia in hippocampus, thalamus, amygdala, and neocortex 24 h after status epilepticus. VEGF induced significant preservation of hippocampal neurons, suggesting that VEGF may play a neuroprotective role following status epilepticus
PMCID:2212620
PMID: 18065154
ISSN: 0306-4522
CID: 76099

Changes in hippocampal function of ovariectomized rats after sequential low doses of estradiol to simulate the preovulatory estrogen surge

Scharfman, Helen E; Hintz, Tana M; Gomez, Juan; Stormes, Kerry A; Barouk, Sharon; Malthankar-Phatak, Gauri H; McCloskey, Daniel P; Luine, Victoria N; Maclusky, Neil J
In adult female rats, robust hippocampal changes occur when estradiol rises on the morning of proestrus. Whether estradiol mediates these changes, however, remains unknown. To address this issue, we used sequential injections of estradiol to simulate two key components of the preovulatory surge: the rapid rise in estradiol on proestrous morning, and the slower rise during the preceding day, diestrus 2. Animals were examined mid-morning of simulated proestrus, and compared to vehicle-treated or intact rats. In both simulated and intact rats, CA1-evoked responses were potentiated in hippocampal slices, and presynaptic mechanisms appeared to contribute. In CA3, multiple population spikes were evoked in response to mossy fiber stimuli, and expression of brain-derived neurotrophic factor was increased. Simulation of proestrous morning also improved performance on object and place recognition tests, in comparison to vehicle treatment. Surprisingly, effects on CA1-evoked responses showed a dependence on estradiol during simulated diestrus 2, as well as a dependence on proestrous morning. Increasing estradiol above the physiological range on proestrous morning paradoxically decreased evoked responses in CA1. However, CA3 pyramidal cell activity increased further, and became synchronized. Together, the results confirm that physiological estradiol levels are sufficient to profoundly affect hippocampal function. In addition: (i) changes on proestrous morning appear to depend on slow increases in estradiol during the preceding day; (ii) effects are extremely sensitive to the peak serum level on proestrous morning; and (iii) there are striking subfield differences within the hippocampus
PMCID:2225429
PMID: 17970745
ISSN: 0953-816X
CID: 76100

Acute and chronic responses to the convulsant pilocarpine in DBA/2J and A/J mice

Winawer, M R; Makarenko, N; McCloskey, D P; Hintz, T M; Nair, N; Palmer, A A; Scharfman, H E
Characterizing the responses of different mouse strains to experimentally-induced seizures can provide clues to the genes that are responsible for seizure susceptibility, and factors that contribute to epilepsy. This approach is optimal when sequenced mouse strains are available. Therefore, we compared two sequenced strains, DBA/2J (DBA) and A/J. These strains were compared using the chemoconvulsant pilocarpine, because pilocarpine induces status epilepticus, a state of severe, prolonged seizures. In addition, pilocarpine-induced status is followed by changes in the brain that are associated with the pathophysiology of temporal lobe epilepsy (TLE). Therefore, pilocarpine can be used to address susceptibility to severe seizures, as well as genes that could be relevant to TLE. A/J mice had a higher incidence of status, but a longer latency to status than DBA mice. DBA mice exhibited more hippocampal pyramidal cell damage. DBA mice developed more ectopic granule cells in the hilus, a result of aberrant migration of granule cells born after status. DBA mice experienced sudden death in the weeks following status, while A/J mice exhibited the most sudden death in the initial hour after pilocarpine administration. The results support previous studies of strain differences based on responses to convulsants. They suggest caution in studies of seizure susceptibility that are based only on incidence or latency. In addition, the results provide new insight into the strain-specific characteristics of DBA and A/J mice. A/J mice provide a potential resource to examine the progression to status. The DBA mouse may be valuable to clarify genes regulating other seizure-associated phenomena, such as seizure-induced neurogenesis and sudden death
PMCID:2640947
PMID: 17904758
ISSN: 0306-4522
CID: 76102

Molecular mechanisms of dentate gyrus granule cell resistance to seizure-induced damage [Meeting Abstract]

Wu, SH; Arevalo, JC; Malthankar-Phatak, GH; Hintz, TM; McCloskey, DP; Tessarollo, L; Chao, MV; Scharfman, HE
ISI:000252917900649
ISSN: 0013-9580
CID: 87154

Mossy cell axon synaptic contacts on ectopic granule cells that are born following pilocarpine-induced seizures

Pierce, Joseph P; Punsoni, Michael; McCloskey, Daniel P; Scharfman, Helen E
Granule cell neurogenesis increases following seizures, and some newly born granule cells develop at abnormal locations within the hilus. These ectopic granule cells (EGCs) demonstrate regular bursts of action potentials that are synchronized with CA3 pyramidal cell burst discharges and the bursts of hilar neurons, including mossy cells. Such findings suggest that mossy cells may participate in circuits that activate EGCs. Electron microscopic immunolabeling was therefore used to determine if mossy cell axon terminals form synapses with hilar EGC dendrites, using animals that underwent pilocarpine-induced status epilepticus. Pilocarpine was administered to adult male rats, and those which developed status epilepticus were perfused 5-7 months later, after the period of EGC genesis. Hippocampal sections were processed for dual electron microscopic immunolabeling (using calcitonin gene-related peptide (CGRP) as a marker for mossy cells and calbindin (CaBP) as a marker for EGCs). Light microscopic analysis revealed large CGRP-immunoreactive cells in the hilus, with the appearance and distribution of mossy cells. Electron microscopic analysis revealed numerous CaBP-immunoreactive dendrites in the hilus, some of which were innervated by CGRP-immunoreactive terminals. The results suggest that mossy cells participate in the excitatory circuits which activate EGCs, providing further insight into the network rearrangements that accompany seizure-induced neurogenesis in this animal model of epilepsy
PMCID:3119631
PMID: 17611032
ISSN: 0304-3940
CID: 73474