Searched for: in-biosketch:yes
person:sodicd01
XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing
Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo
PURPOSE: To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. METHODS: Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting undersampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. RESULTS: XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. CONCLUSION: XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. Magn Reson Med, 2015. (c) 2015 Wiley Periodicals, Inc.
PMCID:4583338
PMID: 25809847
ISSN: 1522-2594
CID: 1514172
Dependence of B1+ and B1- Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency
Vaidya, Manushka V; Collins, Christopher M; Sodickson, Daniel K; Brown, Ryan; Wiggins, Graham C; Lattanzi, Riccardo
In high field MRI, the spatial distribution of the radiofrequency magnetic ( B1) field is usually affected by the presence of the sample. For hardware design and to aid interpretation of experimental results, it is important both to anticipate and to accurately simulate the behavior of these fields. Fields generated by a radiofrequency surface coil were simulated using dyadic Green's functions, or experimentally measured over a range of frequencies inside an object whose electrical properties were varied to illustrate a variety of transmit [Formula: see text] and receive [Formula: see text] field patterns. In this work, we examine how changes in polarization of the field and interference of propagating waves in an object can affect the B1 spatial distribution. Results are explained conceptually using Maxwell's equations and intuitive illustrations. We demonstrate that the electrical conductivity alters the spatial distribution of distinct polarized components of the field, causing "twisted" transmit and receive field patterns, and asymmetries between [Formula: see text] and [Formula: see text]. Additionally, interference patterns due to wavelength effects are observed at high field in samples with high relative permittivity and near-zero conductivity, but are not present in lossy samples due to the attenuation of propagating EM fields. This work provides a conceptual framework for understanding B1 spatial distributions for surface coils and can provide guidance for RF engineers.
PMCID:5082994
PMID: 27795697
ISSN: 1552-5031
CID: 2296462
Radiofrequency energy deposition and radiofrequency power requirements in parallel transmission with increasing distance from the coil to the sample
Deniz, Cem M; Vaidya, Manushka V; Sodickson, Daniel K; Lattanzi, Riccardo
PURPOSE: We investigated global specific absorption rate (SAR) and radiofrequency (RF) power requirements in parallel transmission as the distance between the transmit coils and the sample was increased. METHODS: We calculated ultimate intrinsic SAR (UISAR), which depends on object geometry and electrical properties but not on coil design, and we used it as the reference to compare the performance of various transmit arrays. We investigated the case of fixing coil size and increasing the number of coils while moving the array away from the sample, as well as the case of fixing coil number and scaling coil dimensions. We also investigated RF power requirements as a function of lift-off, and tracked local SAR distributions associated with global SAR optima. RESULTS: In all cases, the target excitation profile was achieved and global SAR (as well as associated maximum local SAR) decreased with lift-off, approaching UISAR, which was constant for all lift-offs. We observed a lift-off value that optimizes the balance between global SAR and power losses in coil conductors. We showed that, using parallel transmission, global SAR can decrease at ultra high fields for finite arrays with a sufficient number of transmit elements. CONCLUSION: For parallel transmission, the distance between coils and object can be optimized to reduce SAR and minimize RF power requirements associated with homogeneous excitation. Magn Reson Med, 2015. (c) 2015 Wiley Periodicals, Inc.
PMCID:4561044
PMID: 25752250
ISSN: 0740-3194
CID: 1494622
Influence of temporal regularization and radial undersampling factor on compressed sensing reconstruction in dynamic contrast enhanced MRI of the breast
Kim, Sungheon G; Feng, Li; Grimm, Robert; Freed, Melanie; Block, Kai Tobias; Sodickson, Daniel K; Moy, Linda; Otazo, Ricardo
BACKGROUND: To evaluate the influence of temporal sparsity regularization and radial undersampling on compressed sensing reconstruction of dynamic contrast-enhanced (DCE) MRI, using the iterative Golden-angle RAdial Sparse Parallel (iGRASP) MRI technique in the setting of breast cancer evaluation. METHODS: DCE-MRI examinations of the breast (n = 7) were conducted using iGRASP at 3 Tesla. Images were reconstructed with five different radial undersampling schemes corresponding to temporal resolutions between 2 and 13.4 s/frame and with four different weights for temporal sparsity regularization (lambda = 0.1, 0.5, 2, and 6 times of noise level). Image similarity to time-averaged reference images was assessed by two breast radiologists and using quantitative metrics. Temporal similarity was measured in terms of wash-in slope and contrast kinetic model parameters. RESULTS: iGRASP images reconstructed with lambda = 2 and 5.1 s/frame had significantly (P < 0.05) higher similarity to time-averaged reference images than the images with other reconstruction parameters (mutual information (MI) >5%), in agreement with the assessment of two breast radiologists. Higher undersampling (temporal resolution < 5.1 s/frame) required stronger temporal sparsity regularization (lambda >/= 2) to remove streaking aliasing artifacts (MI > 23% between lambda = 2 and 0.5). The difference between the kinetic-model transfer rates of benign and malignant groups decreased as temporal resolution decreased (82% between 2 and 13.4 s/frame). CONCLUSION: This study demonstrates objective spatial and temporal similarity measures can be used to assess the influence of sparsity constraint and undersampling in compressed sensing DCE-MRI and also shows that the iGRASP method provides the flexibility of optimizing these reconstruction parameters in the postprocessing stage using the same acquired data. J. Magn. Reson. Imaging 2015.
PMCID:4666836
PMID: 26032976
ISSN: 1522-2586
CID: 1615322
Utility of rapid prototyping in complex DORV: Does it alter management decisions? [Meeting Abstract]
Bhatla, P; Chakravarti, S; Latson, L A; Sodickson, D K; Mosca, R S; Wake, N
Background: Complex ventricular-arterial (VA) relationships in patients with double outlet right ventricle (DORV) make preoperative assessment of potential repair pathways challenging. The relationship of the ventricular septal defect (VSD) to one or both great arteries must be understood and this influences the choice of surgical procedure [1] In neonates and infants with DORV, Computed Tomography (CT) is often performed due to the ability to get high spatial resolution and ECG gated images [2], however it is possible to get the necessary information from Magnetic Resonance (MR) imaging with an added advantage of avoiding exposure to ionizing radiation. Both CT and MR allow image acquisition in three dimensions (3D) but traditional viewing of the anatomy using the multiplanar reformatting is actually done in two dimensions (2D). Volume rendering from either modality may also be performed, but typically only the external vascular anatomy is depicted. We hypothesized that it is possible to accurately define the intracardiac anatomy in infants with DORV using virtual and physical 3D printed (rapid prototyped) models created from either MR or CT and this can both aid in better defining potential VA pathways and may assist in surgical decision making. Methods: Virtual and physical 3D models were generated for three patients with DORV. Non-ECG-gated 3D spoiled fast gradient echo sequence MR angiography was used for two patients. Retrospective ECG gated CT angiography images acquired in diastole were used in the third patient (to better define the coronary arteries given the suspicion of a single coronary artery by echocardiography). Blood pool segmentation (Figure 1a) was performed in all the three patients (Mimics, Materialise, Leuven, Belgium). A 2 mm shell was added to the blood pool and it was hollowed to create a patient specific heart replica (3-matic, Materialise, Leuven, Belgium). All virtual models were cut to best demonstrate the VA relationships and the models were printed. Results: The VSD and VA relationships were well visualized in all three patients using both the virtual and physical models (Figure 1b,c). The models helped the surgeons better understand the anatomy in all patients: in two patients the surgical plan was altered while the plan was confirmed in the third patient (Table 1). Conclusions: Construction of 3D models in patients with DORV is feasible and allows for extensive examination and surgical planning. This may facilitate a focused and informed surgical procedure and improve the potential for successful outcome. For purposes of DORV, non-gated MRA is sufficient to delineate the VA relationships adequately for 3D printing and enhanced clinical decision-making. CT imaging should be reserved for only those patients where additional information like coronary artery anatomy is desired
EMBASE:72183054
ISSN: 1097-6647
CID: 1950612
Whole heart self-navigated 3D radial MRI for the creation of virtual 3D models in congenital heart disease [Meeting Abstract]
Wake, N; Feng, L; Piccini, D; Latson, L A; Mosca, R S; Sodickson, D K; Bhatla, P
Background: Three-dimensional (3D) virtual models are valuable tools that may help to better understand complex cardiovascular anatomy and facilitate surgical planning in patients with congenital heart disease (CHD). Although computed tomography (CT) images are used most commonly to create these models [1,2], Magnetic Resonance Imaging (MRI) may be an attractive alternative, since it offers superior soft-tissue characterization and flexible image contrast mechanisms, and avoids the use of ionizing radiation. However, segmentation on MRI images is inherently challenging due to noise/artifacts, magnetic field inhomogeneity, and relatively lower spatial resolution compared to CT. The purpose of this study was to evaluate the image quality and assess the feasibility of creating virtual 3D heart models using a novel prototype 3D whole heart self-navigated radial MRI technique. Methods: Free-breathing self-navigated whole heart MRI was performed on three pediatric patients: two with complex CHD (average age=17 months) and one with normal cardiac anatomy (age=17years), using a 3D radial, non-slice-selective, T2-prepared, fat-saturated bSSFP sequence on a 1.5T MRI scanner (MAGNETOM Aera, Siemens, Germany). The acquisition window (~50-55 ms) was placed in mid-diastole and was adapted for different heart rates. Imaging parameters were as follows: TR/TE=3.1/1.56 ms, FOV=200 mm3, voxel size=1 mm3, FA=115degree, and acquisition time=5-6 minutes (~12000 radial lines). Respiratory motion correction and image reconstruction was performed on the scanner as described in [3]. For comparison, conventional non-gated 3D FLASH or navigator-gated 3D bSSFP sequences were also performed. All results were blinded and randomized for image quality assessment by one pediatric cardiologist and one cardiac radiologist using a five-point scale (1=non-diagnostic, 2=poor, 3=adequate, 4=good, 5=excellent). Statistical analysis was performed to compare mean scores. DICOM images were imported to a 3D workstation (Mimics, Materialise, Leuven, Belgium) for 3D postprocessing. The cardiovascular anatomy was first segmented using a combination of automated and manual techniques; and volume rendering was performed to depict the anatomy of interest. Results: The free-breathing self-navigated 3D radial acquisition provided significantly improved image quality and myocardial wall-blood contrast (Figure 1). Mean scores were 4.58 and 2.67 for the 3D radial and FLASH/ bSSFP sequences respectively (p = 0.003). The cardiovascular anatomy was well depicted on all virtual 3D models (Figure 2). Conclusions: 3D virtual models are frequently being created to understand complex anatomy, influence surgical planning, and provide intra-operative guidance for patients with CHD. This novel free-breathing, self-navigated whole heart 3D radial sequence provided excellent image quality as compared to existing routine MR sequences. Furthermore, the (Figure Presented) superb image quality provided using this novel sequence makes it an excellent choice for the creation of 3D models
EMBASE:72183064
ISSN: 1097-6647
CID: 1950602
Introductory magnetic resonance imaging physics
Chapter by: Sodickson, Aaron D; Sodickson, Daniel K
in: Handbook of neuro-oncology neuroimaging by Newton, Herbert B [Eds]
San Diego, CA, US: Elsevier Academic Press, 2016
pp. 157-166
ISBN: 978-0-12-800945-1
CID: 2259702
Low Rank plus Sparse Spatiotemporal MRI: Acceleration, Background Suppression, and Motion Learning
Chapter by: Otazo, Ricardo; Candes, Emmanuel; Sodickson, Daniel K
in: Handbook of robust low-rank and sparse matrix decomposition : applications in image and video processing by Bouwmans, Thierry; Aybat, Necdet Serhat; Zahzah, El-hadi [Eds]
Boca Raton, FL : CRC Press, 2016
pp. 17-1-17-18
ISBN: 1498724620
CID: 2492982
Online Radial Multiband Magnetic Resonance Fingerprinting [Meeting Abstract]
Cloos, Martijn A; Zhao, Tiejun; Knoll, Florian; Sodickson, Daniel K
ORIGINAL:0014723
ISSN: 1524-6965
CID: 4535152
Learning a Variational Model for Compressed Sensing MRI Reconstruction [Meeting Abstract]
Hammernik, Kerstin; Knoll, Florian; Sodickson, Daniel K; Pock, Thomas
ORIGINAL:0014692
ISSN: 1524-6965
CID: 4534382