Searched for: in-biosketch:yes
person:chaom01
Sciatic nerve injury model in the axolotl: functional, electrophysiological, and radiographic outcomes
Kropf, Nina; Krishnan, Kartik; Chao, Moses; Schweitzer, Mark; Rosenberg, Zehava; Russell, Stephen M
OBJECT: The 2 aims of this study were as follows: 1) to establish outcome measures of nerve regeneration in an axolotl model of peripheral nerve injury; and 2) to define the timing and completeness of reinnervation in the axolotl following different types of sciatic nerve injury. METHODS: The sciatic nerves in 36 axolotls were exposed bilaterally in 3 groups containing 12 animals each: Group 1, left side sham, right side crush; Group 2, left side sham, right side nerve resected and proximal stump buried; and Group 3 left side cut and sutured, right side cut and sutured with tibial and peroneal divisions reversed. Outcome measures included the following: 1) an axolotl sciatic functional index (ASFI) derived from video swim analysis; 2) motor latencies; and 3) MR imaging evaluation of nerve and muscle edema. RESULTS: For crush injuries, the ASFI returned to baseline by 2 weeks, as did MR imaging parameters and motor latencies. For buried nerves, the ASFI returned to 20% below baseline by 8 weeks, with motor evoked potentials present. On MR imaging, nerve edema peaked at 3 days postintervention and gradually normalized over 12 weeks, whereas muscle denervation was present until a gradual decrease was seen between 4 and 12 weeks. For cut nerves, the ASFI returned to 20% below baseline by Week 4, where it plateaued. Motor evoked potentials were observed at 2-4 weeks, but with an increased latency until Week 6, and MR imaging analysis revealed muscle denervation for 4 weeks. CONCLUSIONS: Multiple outcome measures in which an axolotl model of peripheral nerve injury is used have been established. Based on historical controls, recovery after nerve injury appears to occur earlier and is more complete than in rodents. Further investigation using this model as a successful 'blueprint' for nerve regeneration in humans is warranted
PMID: 19764825
ISSN: 1933-0693
CID: 120633
Trk activation in the secretory pathway promotes Golgi fragmentation
Schecterson, Leslayann C; Hudson, Mark P; Ko, Mabel; Philippidou, Polyxeni; Akmentin, Wendy; Wiley, Jesse; Rosenblum, Elise; Chao, Moses V; Halegoua, Simon; Bothwell, Mark
Activation of nascent receptor tyrosine kinases within the secretory pathway has been reported, yet the consequences of intracellular activation are largely unexplored. We report that overexpression of the Trk neurotrophin receptors causes accumulation of autoactivated receptors in the ER-Golgi intermediate compartment. Autoactivated receptors exhibit inhibited Golgi-mediated processing and they inhibit Golgi-mediated processing of other co-expressed transmembrane proteins, apparently by inducing fragmentation of the Golgi apparatus. Signaling from G protein-coupled receptors is known to induce Trk transactivation. Transactivation of nascent TrkB in hippocampal neurons resulting from exposure to the neuropeptide PACAP caused Golgi fragmentation, whereas BDNF-dependent activation of TrkB did not. TrkB-mediated Golgi fragmentation employs a MEK-dependent signaling pathway resembling that implicated in regulation of Golgi fragmentation in mitotic cells. Neuronal Golgi fragments, in the form of dendritically localized Golgi outposts, are important determinants of dendritic growth and branching. The capacity of transactivated TrkB to enhance neuronal Golgi fragmentation may represent a novel mechanism regulating neural plasticity
PMID: 20123019
ISSN: 1095-9327
CID: 133480
Nuclear localization of the p75 neurotrophin receptor intracellular domain
Parkhurst, Christopher N; Zampieri, Niccolo; Chao, Moses V
The p75 neurotrophin receptor, a member of the tumor necrosis factor superfamily of receptors, undergoes an alpha-secretase-mediated release of its extracellular domain, followed by a gamma-secretase-mediated intramembrane cleavage. Like amyloid precursor protein and Notch, gamma-secretase cleavage of the p75 receptor releases an intracellular domain (ICD). However, it has been experimentally challenging to determine the precise subcellular localization and functional consequences of the p75 ICD. Here, we utilized a nuclear translocation assay and biochemical fractionation approaches to follow the fate of the ICD. We found that the p75 ICD can translocate to the nucleus to activate a green fluorescent protein reporter gene. Furthermore, the p75 ICD was localized in nuclear fractions. Chromatin immunoprecipitation experiments indicated that nerve growth factor induced the association of endogenous p75 with the cyclin E(1) promoter. Expression of the p75 ICD resulted in modulation of gene expression from this locus. These results suggest that the p75 ICD generated by gamma-secretase cleavage is capable of modulating transcriptional events in the nucleus
PMCID:2820764
PMID: 20022966
ISSN: 0021-9258
CID: 107370
A conversation with Rita Levi-Montalcini
Chao, Moses V
PMID: 19827948
ISSN: 1545-1585
CID: 133758
Proneurotrophin-3 is a neuronal apoptotic ligand: evidence for retrograde-directed cell killing
Yano, Hiroko; Torkin, Risa; Martin, Laura Andres; Chao, Moses V; Teng, Kenneth K
Although mature neurotrophins are well described trophic factors that elicit retrograde survival signaling, the precursor forms of neurotrophins (i.e., proneurotrophins) can function as high-affinity apoptotic ligands for selected neural populations. An outstanding question is whether target-derived proneurotrophins might affect neuronal survival/death decisions through a retrograde transport mechanism. Since neurotrophin-3 (NT-3) is highly expressed in non-neural tissues that receive peripheral innervation, we investigated the localized actions of its precursor (proNT-3) on sympathetic neurons in the present study. Pharmacological inhibition of intracellular furin proteinase activity in 293T cells resulted in proNT-3 release instead of mature NT-3, whereas membrane depolarization in cerebellar granule neurons stimulated endogenous proNT-3 secretion, suggesting that proNT-3 is an inducible bona fide ligand in the nervous system. Our data also indicate that recombinant proNT-3 induced sympathetic neuron death that is p75(NTR)- and sortilin-dependent, with hallmark features of apoptosis including JNK (c-Jun N-terminal kinase) activation and nuclear fragmentation. Using compartmentalized culture systems that segregate neuronal cell bodies from axons, proNT-3, acting within the distal axon compartment, elicited sympathetic neuron death and overrode the survival-promoting actions of NGF. Together, these results raise the intriguing possibility that dysregulation of proneurotrophin processing/release by innervated targets can be deleterious to the neurons projecting to these sites
PMCID:2824605
PMID: 19940174
ISSN: 1529-2401
CID: 105519
Neuropathy target esterase is required for adult vertebrate axon maintenance
Read, David J; Li, Yong; Chao, Moses V; Cavanagh, John B; Glynn, Paul
The enzyme neuropathy target esterase (NTE) is present in neurons and deacylates the major membrane phospholipid, phosphatidylcholine (PtdCho). Mutation of the NTE gene or poisoning by neuropathic organophosphates-chemical inhibitors of NTE-causes distal degeneration of long spinal axons in humans. However, analogous neuropathological changes have not been reported in nestin-cre:NTEfl/fl mice with NTE-deficient neural tissue. Furthermore, altered PtdCho homeostasis has not been detected in NTE-deficient vertebrates. Here, we describe distal degeneration of the longest spinal axons in approximately 3-week-old nestin-cre:NTEfl/fl mice and in adult C57BL/6J mice after acute dosing with a neuropathic organophosphate: in both groups early degenerative lesions were followed by swellings comprising accumulated axoplasmic material. In mice dosed acutely with organophosphate, maximal numbers of lesions, in the longest spinal sensory axon tract, were attained within days and were preceded by a transient rise in neural PtdCho. In nestin-cre:NTEfl/fl mice, sustained elevation of PtdCho over many months was accompanied by progressive degeneration and massive swelling of axons in sensory and motor spinal tracts and by increasing hindlimb dysfunction. Axonal lesion distribution closely resembled that in hereditary spastic paraplegia (HSP). The importance of defective membrane trafficking in HSP and the association of NTE with the endoplasmic reticulum-the starting point for the constitutive secretory pathway and transport of neuronal materials into axons-prompted investigation for a role of NTE in secretion. Cultured NTE-deficient neurons displayed modestly impaired secretion, consistent with neuronal viability and damage in vivo initially restricted to distal parts of the longest axons
PMCID:3849655
PMID: 19759306
ISSN: 1529-2401
CID: 102412
Spongiform pathology in mouse CNS lacking 'neuropathy target esterase' and cellular prion protein
Rosenbluth, Jack; Schiff, Rolf; Lam, Pokman; Nuriel, Tal; Chao, Moses V
Conditional inactivation of the 'neuropathy target esterase' (NTE) gene in mouse nerve cells was previously shown to result in CNS pathology comparable to the spongiform encephalopathy characteristic of prion diseases. To determine whether cellular prion protein (PrPc) is essential for development of this pathology we examined hippocampi of mice lacking NTE alone, PrPc alone or both NTE and PrPc. Light microscopic survey showed clear-cut spongiform changes in a majority of NTE-/- and NTE/PrP-/- double knockout mice but in only one PrP-/- mouse. EM analysis of spongiform lesions from NTE-/- and NTE/PrP-/- mice, and from the one affected PrP-/- mouse, revealed patches of branching tubular inclusions, comparable to the 'tubulovesicular inclusions' described previously in prion diseases. We conclude that spongiform pathology in conditional NTE knockout mice is not mediated by PrPc, and that tubulovesicular inclusions can be seen in spongiform encephalopathy of other etiologies and are not pathognomonic of prion disease
PMCID:2749466
PMID: 19524041
ISSN: 1095-953x
CID: 101443
Ankyrin Repeat-rich Membrane Spanning/Kidins220 protein regulates dendritic branching and spine stability in vivo
Wu, Synphen H; Arevalo, Juan Carlos; Sarti, Federica; Tessarollo, Lino; Gan, Wen-Biao; Chao, Moses V
The development of nervous system connectivity depends upon the arborization of dendritic fields and the stabilization of dendritic spine synapses. It is well established that neuronal activity and the neurotrophin BDNF modulate these correlated processes. However, the downstream mechanisms by which these extrinsic signals regulate dendritic development and spine stabilization are less well known. Here we report that a substrate of BDNF signaling, the Ankyrin Repeat-rich Membrane Spanning (ARMS) protein or Kidins220, plays a critical role in the branching of cortical and hippocampal dendrites and in the turnover of cortical spines. In the barrel somatosensory cortex and the dentate gyrus, regions where ARMS/Kidins220 is highly expressed, no difference in the complexity of dendritic arbors was observed in 1-month-old adolescent ARMS/Kidins220(+/-) mice compared to wild-type littermates. However, at 3 months of age, young adult ARMS/Kidins220(+/-) mice exhibited decreased dendritic complexity. This suggests that ARMS/Kidins220 does not play a significant role in the initial formation of dendrites but, rather, is involved in the refinement or stabilization of the arbors later in development. In addition, at 1 month of age, the rate of spine elimination was higher in ARMS/Kidins220(+/-) mice than in wild-type mice, suggesting that ARMS/Kidins220(+/-) levels regulate spine stability. Taken together, these data suggest that ARMS/Kidins220 is important for the growth of dendritic arbors and spine stability during an activity- and BDNF-dependent period of development. (c) 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009
PMCID:4098644
PMID: 19449316
ISSN: 1932-8451
CID: 100607
Essential role of Hrs in endocytic recycling of full-length TrkB receptor but not its isoform TrkB.T1
Huang, Shu-Hong; Zhao, Ling; Sun, Zong-Peng; Li, Xue-Zhi; Geng, Zhao; Zhang, Kai-Di; Chao, Moses V; Chen, Zhe-Yu
Brain-derived neurotrophic factor (BDNF) signaling through its receptor, TrkB, modulates survival, differentiation, and synaptic activity of neurons. Both full-length TrkB (TrkB-FL) and its isoform T1 (TrkB.T1) receptors are expressed in neurons; however, whether they follow the same endocytic pathway after BDNF treatment is not known. In this study we report that TrkB-FL and TrkB.T1 receptors traverse divergent endocytic pathways after binding to BDNF. We provide evidence that in neurons TrkB.T1 receptors predominantly recycle back to the cell surface by a 'default' mechanism. However, endocytosed TrkB-FL receptors recycle to a lesser extent in a hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-dependent manner which relies on its tyrosine kinase activity. The distinct role of Hrs in promoting recycling of internalized TrkB-FL receptors is independent of its ubiquitin-interacting motif. Moreover, Hrs-sensitive TrkB-FL recycling plays a role in BDNF-induced prolonged mitogen-activated protein kinase (MAPK) activation. These observations provide evidence for differential postendocytic sorting of TrkB-FL and TrkB.T1 receptors to alternate intracellular pathways
PMCID:2685694
PMID: 19351881
ISSN: 0021-9258
CID: 145800
Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease
Nagahara, Alan H; Merrill, David A; Coppola, Giovanni; Tsukada, Shingo; Schroeder, Brock E; Shaked, Gideon M; Wang, Ling; Blesch, Armin; Kim, Albert; Conner, James M; Rockenstein, Edward; Chao, Moses V; Koo, Edward H; Geschwind, Daniel; Masliah, Eliezer; Chiba, Andrea A; Tuszynski, Mark H
Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimer's disease. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimer's disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF gene delivery, when administered after disease onset, reverses synapse loss, partially normalizes aberrant gene expression, improves cell signaling and restores learning and memory. These outcomes occur independently of effects on amyloid plaque load. In aged rats, BDNF infusion reverses cognitive decline, improves age-related perturbations in gene expression and restores cell signaling. In adult rats and primates, BDNF prevents lesion-induced death of entorhinal cortical neurons. In aged primates, BDNF reverses neuronal atrophy and ameliorates age-related cognitive impairment. Collectively, these findings indicate that BDNF exerts substantial protective effects on crucial neuronal circuitry involved in Alzheimer's disease, acting through amyloid-independent mechanisms. BDNF therapeutic delivery merits exploration as a potential therapy for Alzheimer's disease
PMCID:2838375
PMID: 19198615
ISSN: 1546-170x
CID: 96166