Searched for: in-biosketch:yes
person:chaom01
A conversation with Rita Levi-Montalcini
Chao, Moses V
PMID: 19827948
ISSN: 1545-1585
CID: 133758
Proneurotrophin-3 is a neuronal apoptotic ligand: evidence for retrograde-directed cell killing
Yano, Hiroko; Torkin, Risa; Martin, Laura Andres; Chao, Moses V; Teng, Kenneth K
Although mature neurotrophins are well described trophic factors that elicit retrograde survival signaling, the precursor forms of neurotrophins (i.e., proneurotrophins) can function as high-affinity apoptotic ligands for selected neural populations. An outstanding question is whether target-derived proneurotrophins might affect neuronal survival/death decisions through a retrograde transport mechanism. Since neurotrophin-3 (NT-3) is highly expressed in non-neural tissues that receive peripheral innervation, we investigated the localized actions of its precursor (proNT-3) on sympathetic neurons in the present study. Pharmacological inhibition of intracellular furin proteinase activity in 293T cells resulted in proNT-3 release instead of mature NT-3, whereas membrane depolarization in cerebellar granule neurons stimulated endogenous proNT-3 secretion, suggesting that proNT-3 is an inducible bona fide ligand in the nervous system. Our data also indicate that recombinant proNT-3 induced sympathetic neuron death that is p75(NTR)- and sortilin-dependent, with hallmark features of apoptosis including JNK (c-Jun N-terminal kinase) activation and nuclear fragmentation. Using compartmentalized culture systems that segregate neuronal cell bodies from axons, proNT-3, acting within the distal axon compartment, elicited sympathetic neuron death and overrode the survival-promoting actions of NGF. Together, these results raise the intriguing possibility that dysregulation of proneurotrophin processing/release by innervated targets can be deleterious to the neurons projecting to these sites
PMCID:2824605
PMID: 19940174
ISSN: 1529-2401
CID: 105519
Neuropathy target esterase is required for adult vertebrate axon maintenance
Read, David J; Li, Yong; Chao, Moses V; Cavanagh, John B; Glynn, Paul
The enzyme neuropathy target esterase (NTE) is present in neurons and deacylates the major membrane phospholipid, phosphatidylcholine (PtdCho). Mutation of the NTE gene or poisoning by neuropathic organophosphates-chemical inhibitors of NTE-causes distal degeneration of long spinal axons in humans. However, analogous neuropathological changes have not been reported in nestin-cre:NTEfl/fl mice with NTE-deficient neural tissue. Furthermore, altered PtdCho homeostasis has not been detected in NTE-deficient vertebrates. Here, we describe distal degeneration of the longest spinal axons in approximately 3-week-old nestin-cre:NTEfl/fl mice and in adult C57BL/6J mice after acute dosing with a neuropathic organophosphate: in both groups early degenerative lesions were followed by swellings comprising accumulated axoplasmic material. In mice dosed acutely with organophosphate, maximal numbers of lesions, in the longest spinal sensory axon tract, were attained within days and were preceded by a transient rise in neural PtdCho. In nestin-cre:NTEfl/fl mice, sustained elevation of PtdCho over many months was accompanied by progressive degeneration and massive swelling of axons in sensory and motor spinal tracts and by increasing hindlimb dysfunction. Axonal lesion distribution closely resembled that in hereditary spastic paraplegia (HSP). The importance of defective membrane trafficking in HSP and the association of NTE with the endoplasmic reticulum-the starting point for the constitutive secretory pathway and transport of neuronal materials into axons-prompted investigation for a role of NTE in secretion. Cultured NTE-deficient neurons displayed modestly impaired secretion, consistent with neuronal viability and damage in vivo initially restricted to distal parts of the longest axons
PMCID:3849655
PMID: 19759306
ISSN: 1529-2401
CID: 102412
Spongiform pathology in mouse CNS lacking 'neuropathy target esterase' and cellular prion protein
Rosenbluth, Jack; Schiff, Rolf; Lam, Pokman; Nuriel, Tal; Chao, Moses V
Conditional inactivation of the 'neuropathy target esterase' (NTE) gene in mouse nerve cells was previously shown to result in CNS pathology comparable to the spongiform encephalopathy characteristic of prion diseases. To determine whether cellular prion protein (PrPc) is essential for development of this pathology we examined hippocampi of mice lacking NTE alone, PrPc alone or both NTE and PrPc. Light microscopic survey showed clear-cut spongiform changes in a majority of NTE-/- and NTE/PrP-/- double knockout mice but in only one PrP-/- mouse. EM analysis of spongiform lesions from NTE-/- and NTE/PrP-/- mice, and from the one affected PrP-/- mouse, revealed patches of branching tubular inclusions, comparable to the 'tubulovesicular inclusions' described previously in prion diseases. We conclude that spongiform pathology in conditional NTE knockout mice is not mediated by PrPc, and that tubulovesicular inclusions can be seen in spongiform encephalopathy of other etiologies and are not pathognomonic of prion disease
PMCID:2749466
PMID: 19524041
ISSN: 1095-953x
CID: 101443
Ankyrin Repeat-rich Membrane Spanning/Kidins220 protein regulates dendritic branching and spine stability in vivo
Wu, Synphen H; Arevalo, Juan Carlos; Sarti, Federica; Tessarollo, Lino; Gan, Wen-Biao; Chao, Moses V
The development of nervous system connectivity depends upon the arborization of dendritic fields and the stabilization of dendritic spine synapses. It is well established that neuronal activity and the neurotrophin BDNF modulate these correlated processes. However, the downstream mechanisms by which these extrinsic signals regulate dendritic development and spine stabilization are less well known. Here we report that a substrate of BDNF signaling, the Ankyrin Repeat-rich Membrane Spanning (ARMS) protein or Kidins220, plays a critical role in the branching of cortical and hippocampal dendrites and in the turnover of cortical spines. In the barrel somatosensory cortex and the dentate gyrus, regions where ARMS/Kidins220 is highly expressed, no difference in the complexity of dendritic arbors was observed in 1-month-old adolescent ARMS/Kidins220(+/-) mice compared to wild-type littermates. However, at 3 months of age, young adult ARMS/Kidins220(+/-) mice exhibited decreased dendritic complexity. This suggests that ARMS/Kidins220 does not play a significant role in the initial formation of dendrites but, rather, is involved in the refinement or stabilization of the arbors later in development. In addition, at 1 month of age, the rate of spine elimination was higher in ARMS/Kidins220(+/-) mice than in wild-type mice, suggesting that ARMS/Kidins220(+/-) levels regulate spine stability. Taken together, these data suggest that ARMS/Kidins220 is important for the growth of dendritic arbors and spine stability during an activity- and BDNF-dependent period of development. (c) 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009
PMCID:4098644
PMID: 19449316
ISSN: 1932-8451
CID: 100607
Essential role of Hrs in endocytic recycling of full-length TrkB receptor but not its isoform TrkB.T1
Huang, Shu-Hong; Zhao, Ling; Sun, Zong-Peng; Li, Xue-Zhi; Geng, Zhao; Zhang, Kai-Di; Chao, Moses V; Chen, Zhe-Yu
Brain-derived neurotrophic factor (BDNF) signaling through its receptor, TrkB, modulates survival, differentiation, and synaptic activity of neurons. Both full-length TrkB (TrkB-FL) and its isoform T1 (TrkB.T1) receptors are expressed in neurons; however, whether they follow the same endocytic pathway after BDNF treatment is not known. In this study we report that TrkB-FL and TrkB.T1 receptors traverse divergent endocytic pathways after binding to BDNF. We provide evidence that in neurons TrkB.T1 receptors predominantly recycle back to the cell surface by a 'default' mechanism. However, endocytosed TrkB-FL receptors recycle to a lesser extent in a hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-dependent manner which relies on its tyrosine kinase activity. The distinct role of Hrs in promoting recycling of internalized TrkB-FL receptors is independent of its ubiquitin-interacting motif. Moreover, Hrs-sensitive TrkB-FL recycling plays a role in BDNF-induced prolonged mitogen-activated protein kinase (MAPK) activation. These observations provide evidence for differential postendocytic sorting of TrkB-FL and TrkB.T1 receptors to alternate intracellular pathways
PMCID:2685694
PMID: 19351881
ISSN: 0021-9258
CID: 145800
Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease
Nagahara, Alan H; Merrill, David A; Coppola, Giovanni; Tsukada, Shingo; Schroeder, Brock E; Shaked, Gideon M; Wang, Ling; Blesch, Armin; Kim, Albert; Conner, James M; Rockenstein, Edward; Chao, Moses V; Koo, Edward H; Geschwind, Daniel; Masliah, Eliezer; Chiba, Andrea A; Tuszynski, Mark H
Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimer's disease. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimer's disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF gene delivery, when administered after disease onset, reverses synapse loss, partially normalizes aberrant gene expression, improves cell signaling and restores learning and memory. These outcomes occur independently of effects on amyloid plaque load. In aged rats, BDNF infusion reverses cognitive decline, improves age-related perturbations in gene expression and restores cell signaling. In adult rats and primates, BDNF prevents lesion-induced death of entorhinal cortical neurons. In aged primates, BDNF reverses neuronal atrophy and ameliorates age-related cognitive impairment. Collectively, these findings indicate that BDNF exerts substantial protective effects on crucial neuronal circuitry involved in Alzheimer's disease, acting through amyloid-independent mechanisms. BDNF therapeutic delivery merits exploration as a potential therapy for Alzheimer's disease
PMCID:2838375
PMID: 19198615
ISSN: 1546-170x
CID: 96166
Overexpression of the early endosome effector rab5 in human fibroblasts leads to down regulation of the neurotrophin receptor trkB [Meeting Abstract]
Elarova, I.; Alldred, M. J.; Che, S.; Counts, S. E.; Cataldo, A. M.; Neve, R. L.; Mufson, E. J.; Chao, M. V.; Nixon, R. A.; Ginsberg, S. D.
BIOSIS:PREV201200030444
ISSN: 1558-3635
CID: 459062
Profiling of CA1 neurons identifies up regulation of select endocytic rab GTPases and concomitant down regulation of neurotrophin receptors during the progression of Alzheimer's disease [Meeting Abstract]
Ginsberg, S. D.; Alldred, M. J.; Counts, S. E.; Cataldo, A. M.; Wuu, J.; Chao, M. V.; Mufson, E. J.; Nixon, R. A.; Che, S.
BIOSIS:PREV201200030442
ISSN: 1558-3635
CID: 459222
Ankyrin-rich membrane spanning protein plays a critical role in nuclear factor-kappa B signaling
Sniderhan, Lynn F; Stout, Angela; Lu, Yuanan; Chao, Moses V; Maggirwar, Sanjay B
Activation of nuclear factor-kappaB (NF-kappaB), a key feature of the neurotrophin signaling, has been shown to be critical for neuronal survival under pathologic settings. However, the precise mechanism by which neurotrophins activate NF-kappaB is not well understood. Here we report that the Ankyrin-rich Membrane Spanning (ARMS/Kidins220) protein, a novel transmembrane substrate of tropomyosin receptor kinase B (TrkB), plays an important role in NF-kappaB signaling elicited by brain-derived neurotrophic factor (BDNF). Accordingly, depletion of ARMS by specific RNA interference, or disruption of ARMS-TrkB interaction with expression of dominant-negative ARMS mutant, abolished BDNF-induced signaling to NF-kappaB. Our data further suggests that ARMS may promote NF-kappaB signaling via activation of mitogen-activated kinase (MAPK) and IkappaB kinase (IKK), thereby facilitating phosphorylation of RelA (major NF-kappaB subunit) at an IKK-sensitive site. The results shown here identify ARMS as a major factor that links neurotrophin signaling to NF-kappaB
PMCID:2577916
PMID: 18501627
ISSN: 1095-9327
CID: 96167