Searched for: in-biosketch:yes
person:daiw01
Grabbing Plk1 by the PBD [Comment]
Dai, Wei; Wang, Xiaoxing
A new centromeric protein termed PBIP1 was identified that recruits Plk1 to the kinetochores. In the November 3 issue of Molecular Cell, show that Plk1 phosphorylates PBIP1 on threonine 78, creating its own high-affinity docking site for the polo-box domain (PBD)
PMID: 17188028
ISSN: 1097-2765
CID: 70160
Extent of constitutive histone H2AX phosphorylation on Ser-139 varies in cells with different TP53 status
Tanaka, T; Kurose, A; Huang, X; Traganos, F; Dai, W; Darzynkiewicz, Z
In response to DNA damage by genotoxic agents, histone H2AX is phosphorylated on Ser-139. However, during the cell cycle, predominantly in S and G(2)M phase, histone H2AX is also phosphorylated in untreated normal and tumour cells. This constitutive H2AX phosphorylation is markedly reduced by exposure of cells to the reactive oxygen species scavenger N-acetyl-L-cysteine. Therefore, it appears likely that constitutive H2AX phosphorylation reflects the ongoing oxidative DNA damage induced by the reactive oxygen species during progression through the cell cycle. Because the tumour suppressor p53 (tumour protein p53) is known to induce transcription of genes associated with cell response to oxidative stress, we have compared the intensity of constitutive H2AX phosphorylation, and the effect of N-acetyl-L-cysteine on it, in cells with different tumour protein p53 status. These were human lymphoblastoid cell lines derived from WIL2 cells: TK6, a p53 wt line, NH32, a tumour protein p53 knock-out derived from TK6, and WTK1, a WIL2-derived line that expresses a homozygous mutant of tumour protein p53. Also tested were the tumour protein p53-null promyelocytic HL-60 cells. The degree of constitutive H2AX phosphorylation was distinctly lower in NH32, WTK1 and HL-60 compared to TK6 cells in all phases of the cell cycle. Also, the degree of attenuation of constitutive H2AX phosphorylation by N-acetyl-L-cysteine was less pronounced in NH32, WTK1, and HL-60, compared to TK6 cells. However, the level of reactive oxygen species detected by the cells' ability to oxidize carboxyl-dichlorodihydrofluorescein diacetate was not significantly different in the cell lines studied, which would suggest that regardless of tumour protein p53 status, the level of oxidative DNA damage was similar. The observed higher level of constitutive H2AX phosphorylation in cells harbouring wt tumour protein p53 may thus indicate that tumour protein p53 plays a role in facilitating histone H2AX phosphorylation, an important step in the mobilization of the DNA repair machinery at the site of DNA double-strand breaks
PMID: 16872365
ISSN: 0960-7722
CID: 76365
BubR1 is involved in regulation of DNA damage responses
Fang, Y; Liu, T; Wang, X; Yang, Y-M; Deng, H; Kunicki, J; Traganos, F; Darzynkiewicz, Z; Lu, L; Dai, W
Defective mitotic spindles or an impaired spindle-kinetochore interaction activates the spindle checkpoint. We have previously shown that BubR1 haplo-insufficiency results in enhanced genomic instability and tumorigenesis in mice. Here we report that BubR1 deficiency also leads to a compromised response to DNA damage. Following treatment with doxorubicin, BubR1(+/-) murine fibroblast cells (MEF) were defective in undergoing G(2)/M arrest. Thus, whereas in the presence of DNA damage BubR1(+/+) MEF cells remained arrested in mitosis, BubR1(+/-) MEFs rapidly exited from mitosis and divided. The impaired mitotic arrest of BubR1(+/-) MEFs was associated with low levels of phospho-histone H2AX, p53, and p21 after DNA damage caused by treatment with both doxorubicin and ultraviolet light (UV). The impaired expression of p53 and p21 was also confirmed in human cell lines with BubR1 knockdown via RNA interference. Affinity pull-down coupled with mass spectrometry identified Poly(ADP-ribose) polymerase 1 (PARP-1) as one of the proteins interacting with BubR1. Reciprocal co-immunoprecipitation analysis confirmed the physical interaction between BubR1 and PARP-1. Our further study revealed that the ability of retaining intact PARP-1 or its cleavage product p89 was compromised in BubR1(+/-) MEFs upon treatment with doxorubicin or UV. Given that PARP-1 mediates DNA damage responses and regulates the activity of p53, our studies suggest that there exists a cross-talk between the spindle checkpoint and the DNA damage checkpoint and that BubR1 may play an important role in mediating the cross-talk
PMID: 16449973
ISSN: 0950-9232
CID: 70084
Polo box domain of Plk3 functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis
Jiang, Ning; Wang, Xiaoxing; Jhanwar-Uniyal, Meena; Darzynkiewicz, Zbigniew; Dai, Wei
Polo-like kinase 3 (Plk3), an immediate early response gene product, plays an important role in the regulation of mitosis, DNA damage checkpoint activation, and Golgi dynamics. Similar to other members of the Plk family, Plk3 has a conserved kinase domain at the N terminus and a Polo box domain consisting of two Polo boxes at the C terminus. In this study, we demonstrate that the Polo box domain of Plk3 is sufficient for subcellular localization of this kinase to the centrosomes, the spindle poles, and the midbody when ectopically expressed in HeLa and U2OS cells. Both Polo boxes are required for the subcellular localization. Overexpression of the Polo box domain, not the kinase domain, of Plk3 causes significant cell cycle arrest and cytokinesis defects, eventually leading to mitotic catastrophe/apoptosis. Interestingly, the Polo box domain of Plk3 is more potent in inhibiting cell proliferation and inducing apoptosis than that of Plk1, suggesting that this domain can provide an additional structural basis for discovery of new anticancer drugs given the current emphasis on Plk1 as a therapeutic target
PMID: 16478733
ISSN: 0021-9258
CID: 70083
Aging in check
Dai, Wei; Wang, Xiaoxing
The spindle checkpoint monitors the interaction between spindle microtubules and kinetochores to prevent precocious entry into anaphase, delaying this stage of mitosis until all condensed chromosomes have been attached to the mitotic spindle in a bi-oriented manner (so that the two kinetochores associated with a pair of sister chromatids are oriented toward opposite poles of the spindle). In addition to conserved Bub and Mad family members, which are known to function in the spindle checkpoint pathway in organisms ranging from yeast to mammals, two mRNA transport genes, Rae1 and Nup9, are also involved in the spindle checkpoint function in mammals. Biochemically, activated spindle checkpoint components have been shown to suppress the activity of the anaphase promoting complex/cyclosome. It is generally thought that decreased activity of the checkpoint components predisposes cells to chromosomal instability, aneuploidy, and malignant transformation. Interestingly, a recent study has shed light on a new function of the spindle checkpoint components Bub3 and Rae1 in the regulation of aging. Mice with haploinsufficiency of Bub3 and Rae1 have a short life span that is associated with the early onset of aging-related features. The progeroid phenotypes caused by deficiency of Bub3 and Rae1 are tightly linked to precocious activation of cellular senescence, but not apoptotic, programs. Therefore, premature aging, rather than neoplastic transformation, may be the major manifestation of a compromised spindle checkpoint in vivo
PMID: 16600919
ISSN: 1539-6150
CID: 70086
Sequential phosphorylation of Ser-10 on histone H3 and ser-139 on histone H2AX and ATM activation during premature chromosome condensation: relationship to cell-cycle phase and apoptosis
Huang, Xuan; Kurose, Akira; Tanaka, Toshiki; Traganos, Frank; Dai, Wei; Darzynkiewicz, Zbigniew
BACKGROUND: Histone H1 and H3 phosphorylation associated with chromatin condensation during mitosis has been studied extensively. Less is known on histone modifications that occur during premature chromosome condensation (PCC). The aim of the present study was to reveal the status of histone H3 and H2AX phosphorylation on Ser-10 and Ser-139, respectively, as well as ATM activation through phosphorylation on Ser-1981, during PCC, and relate these events to cell-cycle phase and to initiation of apoptosis. MATERIALS AND METHODS: To induce PCC, A549 and HL-60 cells were exposed to the phosphatase inhibitor calyculin A (Cal A). Phosphorylation of histone H3 and H2AX as well as ATM activation were detected immunocytochemically concurrent with analysis of cellular DNA content and activation of caspase-3, a marker of apoptosis. The intensity of cellular fluorescence was measured by flow- or laser scanning cytometry. RESULTS: Induction of PCC led to rapid histone H3 phosphorylation, followed by activation of ATM and then H2AX phosphorylation in both, HL-60 and A549 cells. All these events occurred sequentially, prior to caspase-3 activation, and affected cells in all phases of the cell cycle. ATM activation and H2AX phosphorylation was seen during mitosis of A549 but not HL-60 cells. CONCLUSIONS: Because the Cal A-induced phosphorylation of histone H3 and H2AX, and of ATM, precede caspase-3 activation these modifications are pertinent to PCC and not to apoptosis-associated chromatin condensation. The sequence of histone H3 and H2AX phosphorylation and ATM activation during PCC is compatible with a role of ATM in mediating phosphorylation of H2AX but not H3. Mitosis in some cell types may proceed without ATM activation and H2AX phosphorylation
PMID: 16528736
ISSN: 1552-4922
CID: 76368
Effects of hydroxyurea and aphidicolin on phosphorylation of ataxia telangiectasia mutated on Ser 1981 and histone H2AX on Ser 139 in relation to cell cycle phase and induction of apoptosis
Kurose, Akira; Tanaka, Toshiki; Huang, Xuan; Traganos, Frank; Dai, Wei; Darzynkiewicz, Zbigniew
BACKGROUND: DNA replication stress often induces DNA damage. The antitumor drug hydroxyurea (HU), a potent inhibitor of ribonucleotide reductase that halts DNA replication through its effects on cellular deoxynucleotide pools, was shown to damage DNA inducing double-strand breaks (DSBs). Aphidicolin (APH), an inhibitor of alpha-like DNA polymerases, was also reported to cause DNA damage, but the evidence for induction of DSBs by APH is not straightforward. Histone H2AX is phosphorylated on Ser 139 in response to DSBs and one of the protein kinases that phosphorylate H2AX is ataxia telangiectasia mutated (ATM); activation of ATM is through its phosphorylation of Ser 1981. The present study was undertaken to reveal whether H2AX is phosphorylated in cells exposed to HU or APH and whether its phosphorylation is mediated by ATM. MATERIALS AND METHODS: HL-60 cells were treated in cultures with 0.1-5.0 mM HU or 1-4 muM APH for up to 5 h. Activation of ATM and H2AX phosphorylation was detected immunocytochemically using Ab specific to Ser1981-ATM or Ser 139-H2AX epitopes, respectively, concurrent with measurement of cellular DNA content. RESULTS: While exposure of cells to HU led to H2AX phosphorylation selectively during S phase and the cells progressing through the early portion of S (DI = 1.1-1.4) were more affected than late-S phase (DI = 1.6-1.9) cells, ATM was not activated by HU. In fact, the level of constitutive ('programmed') ATM phosphorylation was distinctly suppressed, in all phases of the cell cycle, at 0.1-5.0 mM HU. Cells' exposure to APH also resulted in H2AX phosphorylation at Ser139 with no evidence of ATM activation, and as in the case of HU, the early-S cells were more affected than the late-S phase cells. The rise in frequency of apoptotic cells became apparent after 2 h of exposure to HU or APH, and all apoptotic cells had markedly elevated levels of both H2AX-Ser139 and ATM-Ser1981 phosphorylation. CONCLUSIONS: The lack of correlation between H2AX phosphorylation and ATM activation indicates that protein kinase(s) other than ATM (ATR and/or DNA-dependent protein kinase) are activated by DSBs induced by replication stress. Interestingly, HU inhibits the constitutive ('programmed') level of ATM phosphorylation in untreated cells. However, DNA fragmentation during apoptosis activates ATM and dramatically increases level of H2AX phosphorylation
PMID: 16528719
ISSN: 1552-4922
CID: 76369
ATM activation and histone H2AX phosphorylation as indicators of DNA damage by DNA topoisomerase I inhibitor topotecan and during apoptosis
Tanaka, T; Kurose, A; Huang, X; Dai, W; Darzynkiewicz, Z
Damage that engenders DNA double-strand breaks (DSBs) activates ataxia telangiectasia mutated (ATM) kinase through its auto- or trans-phosphorylation on Ser1981 and activated ATM is one of the mediators of histone H2AX phosphorylation on Ser139. The present study was designed to explore: (i) whether measurement of ATM activation combined with H2AX phosphorylation provides a more sensitive indicator of DSBs than each of these events alone, and (ii) to reveal possible involvement of ATM activation in H2AX phosphorylation during apoptosis. Activation of ATM and/or H2AX phosphorylation in HL-60 or Jurkat cells treated with topotecan (Tpt) was detected immunocytochemically in relation to cell cycle phase, by multiparameter cytometry. Exposure to Tpt led to concurrent phosphorylation of ATM and H2AX in S-phase cells, whereas G1 cells were unaffected. Immunofluorescence (IF) of the S-phase cells immunostained for ATM-S1981P and gammaH2AX combined was distinctly stronger compared to that of the cells stained for each of these proteins alone. However, because of the relatively high ATM-S1981P IF of G1 cells, the ratio of IF of S to G1 cells, that is, the factor that determines competence of the assay in distinction of cells with DSBs, was 2- to 3-fold lower for ATM-S1981P alone, or for ATM-S1981P and gammaH2AX IF combined, than for gammaH2AX alone. ATM activation concurrent with H2AX phosphorylation, likely triggered by induction of DSBs during DNA fragmentation, occurred during apoptosis. The data suggest that frequency of activated ATM and phosphorylated H2AX molecules, per apoptotic cell, is comparable
PMID: 16426422
ISSN: 0960-7722
CID: 76366
Assessment of ATM phosphorylation on Ser-1981 induced by DNA topoisomerase I and II inhibitors in relation to Ser-139-histone H2AX phosphorylation, cell cycle phase, and apoptosis
Kurose, Akira; Tanaka, Toshiki; Huang, Xuan; Halicka, H Dorota; Traganos, Frank; Dai, Wei; Darzynkiewicz, Zbigniew
BACKGROUND: The ATM kinase regulates cell-cycle checkpoints by phosphorylating multiple proteins, including histone H2AX, CHK1, and CHK2 kinases and p53. ATM is activated through auto- or trans- phosphorylation of Ser-1981 in response to DNA damage, particularly induction of DNA double-strand breaks (DSBs). The aim of the present study was to reveal a possible correlation between activation of ATM vis-a-vis H2AX phosphorylation, cell cycle phase, and apoptosis in cells treated with DNA topoisomerase (topo) I (topotecan; Tpt) or topo2 (mitoxantrone; Mtx) inhibitor. MATERIALS AND METHODS: Cultures of HL-60 cells were treated with Tpt or Mtx for various time intervals. ATM or H2AX phosphorylation was detected immunocytochemically, using Ab specific for ATM phosphorylated on Ser-1981 (ATM-S1981(P)) or for H2AX (gammaH2AX) phosphorylated on Ser-139, respectively, concurrent with the analysis of cellular DNA content. Cellular fluorescence was measured by flow cytometry. RESULTS: Untreated cells showed a modest but variable level of labeling with ATM-S1981(P) Ab across the cell cycle, with exception of mitotic cells that were strongly labeled. Exposure of cells to 150 nM Tpt induced ATM phosphorylation concurrent with phosphorylation of H2AX within 10 min; phosphorylation of both proteins was essentially limited to S-phase and was suppressed by caffeine and wortmannin, inhibitors of PI-3-like kinases. Exposure of cells to Mtx also led to ATM and H2AX phosphorylation, which, compared to Tpt, occurred later and was not cell-cycle-phase specific. Apoptosis of HL-60 cells in Tpt or Mtx treated cultures was detected after 2 or 4 h, respectively, and was limited to S-phase cells. CONCLUSIONS: The data are consistent with the role of ATM as a mediator of H2AX phosphorylation in response to DNA damage by topo1 (Tpt) or topo 2 (Mtx) inhibitor. The observed cell-cycle-phase related differences in response to Tpt vs Mtx suggest that while the collisions of DNA replication forks with the 'cleavable complexes' stabilized by topo1 inhibitor are the primary cause of DSBs induced by Tpt, the collisions of RNA polymerase molecules with the complexes stabilized by the topo2 inhibitor play a major role for induction of DSBs by Mtx. The present report is the first that (i) describes cytometric analysis of ATM activation and (ii) demonstrates activation of the enzyme (kinase) and its consequence (substrate phoshorylation), both in relation to cell-cycle phase and onset of apoptosis within the same cells
PMID: 16184611
ISSN: 1552-4922
CID: 76370
Ultraviolet irradiation-induced K(+) channel activity involving p53 activation in corneal epithelial cells
Wang, Ling; Dai, Wei; Lu, Luo
Recent studies from our lab found that ultraviolet (UV) irradiation induces a voltage-gated potassium (Kv) channel activation and subsequently activates JNK signaling pathway resulting in apoptosis. The present study in rabbit corneal epithelial (RCE) cells is to investigate mechanisms of UV irradiation-induced Kv channel activity involving p53 activation in parallel to DNA damage-induced signaling pathway. UV irradiation-induced signaling events were characterized by measurements of JNK activation and further downstream p53 phosphorylation. UV irradiation elicited an early response in the cell membrane through activation of Kv channels to activate the JNK signaling pathway and p53 phosphorylation. Exposure of RCE cells to UV irradiation within a few min resulted in JNK and p53 activations that were markedly inhibited by suppression of Kv channel activity. However, suppression of Kv channel activity failed to prevent p53 activation induced by extended DNA damages through prolonging UV exposure time (more than 15 min). In addition, caffeine inhibited UV-induced activation of SEK, an upstream MAPK kinase of JNK, resulting in suppression of both Kv channel-involved and DNA damage-induced p53 activation. Our results indicate in these cells that UV irradiation induces earlier and later intracellular events that link to activation of JNK and p53. The early event in response to UV irradiation is initiated by activating Kv channels in the cell membrane, and the later event is predominated by UV irradiation-caused DNA damage
PMCID:1920501
PMID: 15750624
ISSN: 0950-9232
CID: 76362