Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:dingy04

Total Results:

182


Species differences in [11C]clorgyline binding in brain

Fowler, J S; Ding, Y S; Logan, J; MacGregor, R R; Shea, C; Garza, V; Gimi, R; Volkow, N D; Wang, G J; Schlyer, D; Ferrieri, R; Gatley, S J; Alexoff, D; Carter, P; King, P; Pappas, N; Arnett, C D
[11C]Clorgyline selectively binds to MAO A in the human brain. This contrasts with a recent report that [11C]clorgyline (in contrast to other labeled MAO A inhibitors) is not retained in the rhesus monkey brain [4]. To explore this difference, we compared [11C]clorgyline in the baboon brain before and after clorgyline pretreatment and we also synthesized deuterium substituted [11C]clorgyline (and its nor-precursor) for comparison. [11C]Clorgyline was not retained in the baboon brain nor was it influenced by clorgyline pretreatment or by deuterium substitution, contrasting to results in humans. This suggests a species difference in the susceptibility of MAO A to inhibition by clorgyline and represents an unusual example of where the behavior of a radiotracer in the baboon brain does not predict its behavior in the human brain
PMID: 11578898
ISSN: 0969-8051
CID: 144692

Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers

Volkow, N D; Chang, L; Wang, G J; Fowler, J S; Franceschi, D; Sedler, M J; Gatley, S J; Hitzemann, R; Ding, Y S; Wong, C; Logan, J
OBJECTIVE: Methamphetamine has raised concerns because it may be neurotoxic to the human brain. Although prior work has focused primarily on the effects of methamphetamine on dopamine cells, there is evidence that other neuronal types are affected. The authors measured regional brain glucose metabolism, which serves as a marker of brain function, to assess if there is evidence of functional changes in methamphetamine abusers in regions other than those innervated by dopamine cells. METHOD: Fifteen detoxified methamphetamine abusers and 21 comparison subjects underwent positron emission tomography following administration of [(18)F]fluorodeoxyglucose. RESULTS: Whole brain metabolism in the methamphetamine abusers was 14% higher than that of comparison subjects; the differences were most accentuated in the parietal cortex (20%). After normalization for whole brain metabolism, methamphetamine abusers exhibited significantly lower metabolism in the thalamus (17% difference) and striatum (where the differences were larger for the caudate [12%] than for the putamen [6%]). Statistical parametric mapping analyses corroborated these findings, revealing higher metabolism in the parietal cortex and lower metabolism in the thalamus and striatum of methamphetamine abusers. CONCLUSIONS: The fact that the parietal cortex is a region devoid of any significant dopaminergic innervation suggests that the higher metabolism seen in this region in the methamphetamine abusers is the result of methamphetamine effects in circuits other than those modulated by dopamine. In addition, the lower metabolism in the striatum and thalamus (major outputs of dopamine signals into the cortex) is likely to reflect the functional consequence of methamphetamine in dopaminergic circuits. These results provide evidence that, in humans, methamphetamine abuse results in changes in function of dopamine- and nondopamine-innervated brain regions
PMID: 11229978
ISSN: 0002-953x
CID: 144699

Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers

Volkow, N D; Chang, L; Wang, G J; Fowler, J S; Leonido-Yee, M; Franceschi, D; Sedler, M J; Gatley, S J; Hitzemann, R; Ding, Y S; Logan, J; Wong, C; Miller, E N
OBJECTIVE: Methamphetamine is a popular and highly addictive drug of abuse that has raised concerns because it has been shown in laboratory animals to be neurotoxic to dopamine terminals. The authors evaluated if similar changes occur in humans and assessed if they were functionally significant. METHOD: Positron emission tomography scans following administration of [(11)C]d-threo-methylphenidate (a dopamine transporter ligand) measured dopamine transporter levels (a marker of dopamine cell terminals) in the brains of 15 detoxified methamphetamine abusers and 18 comparison subjects. Neuropsychological tests were also performed to assess motor and cognitive function. RESULTS: Methamphetamine abusers showed significant dopamine transporter reduction in the striatum (mean differences of 27.8% in the caudate and 21.1% in the putamen) relative to the comparison subjects; this reduction was evident even in abusers who had been detoxified for at least 11 months. Dopamine transporter reduction was associated with motor slowing and memory impairment. CONCLUSIONS: These results provide evidence that methamphetamine at dose levels taken by human abusers of the drug leads to dopamine transporter reduction that is associated with motor and cognitive impairment. These results emphasize the urgency of alerting clinicians and the public of the long-term changes that methamphetamine can induce in the human brain
PMID: 11229977
ISSN: 0002-953x
CID: 144700

A strategy for removing the bias in the graphical analysis method

Logan, J; Fowler, J S; Volkow, N D; Ding, Y S; Wang, G J; Alexoff, D L
The graphical analysis method, which transforms multiple time measurements of plasma and tissue uptake data into a linear plot, is a useful tool for rapidly obtaining information about the binding of radioligands used in PET studies. The strength of the method is that it does not require a particular model structure. However, a bias is introduced in the case of noisy data resulting in the underestimation of the distribution volume (DV), the slope obtained from the graphical method. To remove the bias, a modification of the method developed by Feng et al. (1993), the generalized linear least squares (GLLS) method, which provides unbiased estimates for compartment models was used. The one compartment GLLS method has a relatively simple form, which was used to estimate the DV directly and as a smoothing technique for more general classes of model structures. In the latter case, the GLLS method was applied to the data in two parts, that is, one set of parameters was determined for times 0 to T1 and a second set from T1 to the end time. The curve generated from these two sets of parameters then was used as input to the graphical method. This has been tested using simulations of data similar to that of the PET ligand [11C]-d-threo-methylphenidate (MP, DV = 35 mL/mL) and 11C raclopride (RAC, DV = 1.92 mL/mL) and compared with two examples from image data with the same tracers. The noise model was based on counting statistics through the half-life of the isotope and the scanning time. Five hundred data sets at each noise level were analyzed. Results (DV) for the graphical analysis (DV(G)), the nonlinear least squares (NLS) method (DV(NLS)), the one-tissue compartment GLLS method (DV(F)), and the two part GLLS followed by graphical analysis (DV(FG)) were compared. DV(FG) was found to increase somewhat with increasing noise and in some data sets at high noise levels no estimate could be obtained. However, at intermediate levels it provided a good estimation of the true DV. This method was extended to use a reference tissue in place of the input function to generate the distribution volume ratio (DVR) to the reference region. A linearized form of the simplified reference tissue method of Lammertsma and Hume (1996) was used. The DVR generated directly from the model (DVR(FL)) was compared with DVR(FG) (determined from a 'smoothed' uptake curve as for DV(FG)) using the graphical method
PMID: 11295885
ISSN: 0271-678x
CID: 144701

Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer's dementia

Volkow, N D; Ding, Y S; Fowler, J S; Gatley, S J
One of the strategies in the treatment of Alzheimer's disease is the use of drugs that enhance cholinergic brain function, since it is believed that cholinergic dysfunction is one of the factors that contributes to cognitive deterioration. Positron emission tomography is a medical imaging method that can be used to measure the concentration, kinetics, and distribution of cholinergic-enhancing drugs directly in the human brain and assess the effects of the drugs at markers of cholinergic cell viability (vesicular transporters, acetylcholinesterase), at muscarininc and nicotinic receptors, at extracellular acetylcholine, at markers of brain function (glucose metabolism and blood flow), and on amyloid plaque burden in vivo in the brains of patients with Alzheimer's disease. In addition, these measures can be applied to assess the drugs' pharmacokinetic and pharmacodynamic properties in the human brain. Since the studies are done in living human subjects, positron emission tomography can evaluate the relationship between the drugs' biological, behavioral, and cognitive effects; monitor changes in brain function in response to chronic treatment; and determine if pharmacologic interventions are neuroprotective. Moreover, because positron emission tomography has the potential to identify Alzheimer's disease during early disease, it can be used to establish whether early interventions can prevent or delay further development
PMID: 11230872
ISSN: 0006-3223
CID: 144703

Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain

Volkow, N D; Wang, G; Fowler, J S; Logan, J; Gerasimov, M; Maynard, L; Ding, Y; Gatley, S J; Gifford, A; Franceschi, D
Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug in children for the treatment of attention deficit hyperactivity disorder (ADHD), yet the mechanisms responsible for its therapeutic effects are poorly understood. Whereas methylphenidate blocks the dopamine transporter (main mechanism for removal of extracellular dopamine), it is unclear whether at doses used therapeutically it significantly changes extracellular dopamine (DA) concentration. Here we used positron emission tomography and [(11)C]raclopride (D2 receptor radioligand that competes with endogenous DA for binding to the receptor) to evaluate whether oral methylphenidate changes extracellular DA in the human brain in 11 healthy controls. We showed that oral methylphenidate (average dose 0.8 +/- 0.11 mg/kg) significantly increased extracellular DA in brain, as evidenced by a significant reduction in B(max)/K(d) (measure of D2 receptor availability) in striatum (20 +/- 12%; p < 0.0005). These results provide direct evidence that oral methylphenidate at doses within the therapeutic range significantly increases extracellular DA in human brain. This result coupled with recent findings of increased dopamine transporters in ADHD patients (which is expected to result in reductions in extracellular DA) provides a mechanistic framework for the therapeutic efficacy of methylphenidate. The increase in DA caused by the blockade of dopamine transporters by methylphenidate predominantly reflects an amplification of spontaneously released DA, which in turn is responsive to environmental stimulation. Because DA decreases background firing rates and increases signal-to-noise in target neurons, we postulate that the amplification of weak DA signals in subjects with ADHD by methylphenidate would enhance task-specific signaling, improving attention and decreasing distractibility. Alternatively methylphenidate-induced increases in DA, a neurotransmitter involved with motivation and reward, could enhance the salience of the task facilitating the 'interest that it elicits' and thus improving performance
PMID: 11160455
ISSN: 1529-2401
CID: 144704

PET Imaging of Estrogen Metabolism in Breast Cancer

Ding, Yu-Shin
[Ft. Belvoir VA] : Ft. Belvoir Defense Technical Information Center, 2001
Extent: 126 p.
ISBN: n/a
CID: 2378

Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain

Volkow, N D; Wang, G J; Fischman, M W; Foltin, R; Fowler, J S; Franceschi, D; Franceschi, M; Logan, J; Gatley, S J; Wong, C; Ding, Y S; Hitzemann, R; Pappas, N
The route of administration influences the reinforcing effects of cocaine. Here we assessed whether there were differences in the efficacy of cocaine to block the dopamine transporters (major target for cocaine's reinforcing effects), as a function of route of administration. Positron emission tomography and [11C]cocaine, a dopamine transporter radioligand, were used to compare the levels of dopamine transporter blockade induced by intravenous, smoked and intranasal cocaine in 32 current cocaine abusers. In parallel, the temporal course for the self-reports of 'high' were obtained. Cocaine significantly blocked dopamine transporters. The levels of blockade were comparable across all routes of administration and a dose effect was observed for intravenous and intranasal cocaine but not for smoked cocaine. For equivalent levels of cocaine in plasma and DAT blockade, smoked cocaine induced significantly greater self reports of 'high' than intranasal cocaine and showed a trend for a greater effect than intravenous cocaine. The time to reach peak subjective was significantly faster for smoked (1.4+/-0.5 min) than for intravenous cocaine (3.1+/-0.9 min), which was faster than intranasal cocaine (14.6+/-8 min). Differences in the reinforcing effects of cocaine as a function of the route of administration are not due to differences in the efficacy of cocaine to block the dopamine transporters. The faster time course for the subjective effects for smoked than intravenous and for intravenous than for intranasal cocaine highlights the importance of the speed of cocaine's delivery into the brain on its reinforcing effects
PMID: 10983846
ISSN: 0024-3205
CID: 144712

Dopamine receptor-mediated regulation of striatal cholinergic activity: positron emission tomography studies with norchloro[18F]fluoroepibatidine

Ding, Y S; Logan, J; Bermel, R; Garza, V; Rice, O; Fowler, J S; Volkow, N D
Large numbers of in vitro studies and microdialysis studies suggest that dopaminergic regulation of striatal acetylcholine (ACh) output is via inhibitory dopamine D2 receptors and stimulatory dopamine D1 receptors. Questions remain as to the relative predominance of dopamine D2 versus D1 receptor modulation of striatal ACh output under physiological conditions. Using positron emission tomography, we first demonstrate that norchloro[18F]fluoroepibatidine ([18F]NFEP), a selective nicotinic ACh receptor (nAChR) ligand, was sensitive to changes of striatal ACh concentration. We then examined the effect of quinpirole (D2 agonist), raclopride (D2 antagonist), SKF38393 (D1 agonist), and SCH23390 (D1 antagonist) on striatal binding of [18F]NFEP in the baboon. Pretreatment with quinpirole increased the striatum (ST) to cerebellum (CB) ratio by 26+/-6%, whereas pretreatment with raclopride decreased the ST/CB ratio by 22+/-2%. The ratio of the distribution volume of [18F]NFEP in striatum to that in cerebellum, which corresponds to (Bmax/K(D)) + 1 (index for nAChR availability), also showed a significant increase (29 and 20%; n = 2) and decrease (20+/-3%; n = 3) after pretreatment with quinpirole and raclopride, respectively. However, both the D1 agonist and antagonist had no significant effect. This suggests that under physiological conditions the predominant influence of endogenous dopamine on striatal ACh output is dopamine D2, not D1, receptor-mediated
PMID: 10737608
ISSN: 0022-3042
CID: 144719

Occupancy of brain nicotinic acetylcholine receptors by nicotine doses equivalent to those obtained when smoking a cigarette

Ding, Y S; Volkow, N D; Logan, J; Garza, V; Pappas, N; King, P; Fowler, J S
PMID: 10657031
ISSN: 0887-4476
CID: 144721