Searched for: in-biosketch:yes
person:gdt1
Ischemic Heart Disease Mortality Associations with Long-Term Exposure to PM2.5 Components [Meeting Abstract]
Thurston, G; Burnett, R; Krewski, D; Shi, YL; Turner, M; Ito, K; Lall, R; Jerrett, M; Calle, E; Tunne, M; Pope, CA
ISI:000270874100210
ISSN: 1044-3983
CID: 106446
Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality
Krewski, Daniel; Jerrett, Michael; Burnett, Richard T; Ma, Renjun; Hughes, Edward; Shi, Yuanli; Turner, Michelle C; Pope, C Arden 3rd; Thurston, George; Calle, Eugenia E; Thun, Michael J; Beckerman, Bernie; DeLuca, Pat; Finkelstein, Norm; Ito, Kaz; Moore, D K; Newbold, K Bruce; Ramsay, Tim; Ross, Zev; Shin, Hwashin; Tempalski, Barbara
We conducted an extended follow-up and spatial analysis of the American Cancer Society (ACS) Cancer Prevention Study II (CPS-II) cohort in order to further examine associations between long-term exposure to particulate air pollution and mortality in large U.S. cities. The current study sought to clarify outstanding scientific issues that arose from our earlier HEI-sponsored Reanalysis of the original ACS study data (the Particle Epidemiology Reanalysis Project). Specifically, we examined (1) how ecologic covariates at the community and neighborhood levels might confound and modify the air pollution-mortality association; (2) how spatial autocorrelation and multiple levels of data (e.g., individual and neighborhood) can be taken into account within the random effects Cox model; (3) how using land-use regression to refine measurements of air pollution exposure to the within-city (or intra-urban) scale might affect the size and significance of health effects in the Los Angeles and New York City regions; and (4) what exposure time windows may be most critical to the air pollution-mortality association. The 18 years of follow-up (extended from 7 years in the original study [Pope et al. 1995]) included vital status data for the CPS-II cohort (approximately 1.2 million participants) with multiple cause-of-death codes through December 31, 2000 and more recent exposure data from air pollution monitoring sites for the metropolitan areas. In the Nationwide Analysis, the influence of ecologic covariate data (such as education attainment, housing characteristics, and level of income; data obtained from the 1980 U.S. Census; see Ecologic Covariates sidebar on page 14) on the air pollution-mortality association were examined at the Zip Code area (ZCA) scale, the metropolitan statistical area (MSA) scale, and by the difference between each ZCA value and the MSA value (DIFF). In contrast to previous analyses that did not directly include ecologic covariates at the ZCA scale, risk estimates increased when ecologic covariates were included at all scales. The ecologic covariates exerted their greatest effect on mortality from ischemic heart disease (IHD), which was also the health outcome most strongly related with exposure to PM2.5 (particles 2.5 microm or smaller in aerodynamic diameter), sulfate (SO4(2-)), and sulfur dioxide (SO2), and the only outcome significantly associated with exposure to nitrogen dioxide (NO2). When ecologic covariates were simultaneously included at both the MSA and DIFF levels, the hazard ratio (HR) for mortality from IHD associated with PM2.5 exposure (average concentration for 1999-2000) increased by 7.5% and that associated with SO4(2-) exposure (average concentration for 1990) increased by 12.8%. The two covariates found to exert the greatest confounding influence on the PM2.5-mortality association were the percentage of the population with a grade 12 education and the median household income. Also in the Nationwide Analysis, complex spatial patterns in the CPS-II data were explored with an extended random effects Cox model (see Glossary of Statistical Terms at end of report) that is capable of clustering up to two geographic levels of data. Using this model tended to increase the HR estimate for exposure to air pollution and also to inflate the uncertainty in the estimates. Including ecologic covariates decreased the variance of the results at both the MSA and ZCA scales; the largest decrease was in residual variation based on models in which the MSA and DIFF levels of data were included together, which suggests that partitioning the ecologic covariates into between-MSA and within-MSA values more completely captures the sources of variation in the relationship between air pollution, ecologic covariates, and mortality. Intra-Urban Analyses were conducted for the New York City and Los Angeles regions. The results of the Los Angeles spatial analysis, where we found high exposure contrasts within the Los Angeles region, showed that air pollution-mortality risks were nearly 3 times greater than those reported from earlier analyses. This suggests that chronic health effects associated with intra-urban gradients in exposure to PM2.5 may be even larger between ZCAs within an MSA than the associations between MSAs that have been previously reported. However, in the New York City spatial analysis, where we found very little exposure contrast between ZCAs within the New York region, mortality from all causes, cardiopulmonary disease (CPD), and lung cancer was not elevated. A positive association was seen for PM2.5 exposure and IHD, which provides evidence of a specific association with a cause of death that has high biologic plausibility. These results were robust when analyses controlled (1) the 44 individual-level covariates (from the ACS enrollment questionnaire in 1982; see 44 Individual-Level Covariates sidebar on page 22) and (2) spatial clustering using the random effects Cox model. Effects were mildly lower when unemployment at the ZCA scale was included. To examine whether there is a critical exposure time window that is primarily responsible for the increased mortality associated with ambient air pollution, we constructed individual time-dependent exposure profiles for particulate and gaseous air pollutants (PM2.5 and SO2) for a subset of the ACS CPS-II participants for whom residence histories were available. The relevance of the three exposure time windows we considered was gauged using the magnitude of the relative risk (HR) of mortality as well as the Akaike information criterion (AIC), which measures the goodness of fit of the model to the data. For PM2.5, no one exposure time window stood out as demonstrating the greatest HR; nor was there any clear pattern of a trend in HR going from recent to more distant windows or vice versa. Differences in AIC values among the three exposure time windows were also small. The HRs for mortality associated with exposure to SO2 were highest in the most recent time window (1 to 5 years), although none of these HRs were significantly elevated. Identifying critical exposure time windows remains a challenge that warrants further work with other relevant data sets. This study provides additional support toward developing cost-effective air quality management policies and strategies. The epidemiologic results reported here are consistent with those from other population-based studies, which collectively have strongly supported the hypothesis that long-term exposure to PM2.5 increases mortality in the general population. Future research using the extended Cox-Poisson random effects methods, advanced geostatistical modeling techniques, and newer exposure assessment techniques will provide additional insight.
PMID: 19627030
ISSN: 1041-5505
CID: 671182
Long-term ozone exposure and mortality
Jerrett, Michael; Burnett, Richard T; Pope, C Arden 3rd; Ito, Kazuhiko; Thurston, George; Krewski, Daniel; Shi, Yuanli; Calle, Eugenia; Thun, Michael
BACKGROUND: Although many studies have linked elevations in tropospheric ozone to adverse health outcomes, the effect of long-term exposure to ozone on air pollution-related mortality remains uncertain. We examined the potential contribution of exposure to ozone to the risk of death from cardiopulmonary causes and specifically to death from respiratory causes. METHODS: Data from the study cohort of the American Cancer Society Cancer Prevention Study II were correlated with air-pollution data from 96 metropolitan statistical areas in the United States. Data were analyzed from 448,850 subjects, with 118,777 deaths in an 18-year follow-up period. Data on daily maximum ozone concentrations were obtained from April 1 to September 30 for the years 1977 through 2000. Data on concentrations of fine particulate matter (particles that are < or = 2.5 microm in aerodynamic diameter [PM(2.5)]) were obtained for the years 1999 and 2000. Associations between ozone concentrations and the risk of death were evaluated with the use of standard and multilevel Cox regression models. RESULTS: In single-pollutant models, increased concentrations of either PM(2.5) or ozone were significantly associated with an increased risk of death from cardiopulmonary causes. In two-pollutant models, PM(2.5) was associated with the risk of death from cardiovascular causes, whereas ozone was associated with the risk of death from respiratory causes. The estimated relative risk of death from respiratory causes that was associated with an increment in ozone concentration of 10 ppb was 1.040 (95% confidence interval, 1.010 to 1.067). The association of ozone with the risk of death from respiratory causes was insensitive to adjustment for confounders and to the type of statistical model used. CONCLUSIONS: In this large study, we were not able to detect an effect of ozone on the risk of death from cardiovascular causes when the concentration of PM(2.5) was taken into account. We did, however, demonstrate a significant increase in the risk of death from respiratory causes in association with an increase in ozone concentration
PMCID:4105969
PMID: 19279340
ISSN: 1533-4406
CID: 135232
New guidelines for hemorheological laboratory techniques [Guideline]
Baskurt, Oguz K; Boynard, Michel; Cokelet, Giles C; Connes, Philippe; Cooke, Brian M; Forconi, Sandro; Liao, Fulong; Hardeman, Max R; Jung, Friedrich; Meiselman, Herbert J; Nash, Gerard; Nemeth, Norbert; Neu, Bjorn; Sandhagen, Bo; Shin, Sehyun; Thurston, George; Wautier, Jean Luc
PMID: 19433882
ISSN: 1386-0291
CID: 671192
Diesel Air Pollution and Asthma Exacerbations in a Group of Children with Asthma [Meeting Abstract]
Spira-Cohen, A; Chen, L; Kendall, M; Xillari, D; Clemente, J; Blaustein, M; Gorzcynski, J; Thurston, GD
ISI:000260191901408
ISSN: 1044-3983
CID: 98113
Air pollution and health: indoor air pollution in the developing world is the real key to reducing the burden of ill health - Reply [Letter]
Thurston, GD
ISI:000253776600020
ISSN: 0040-6376
CID: 87121
Outdoor air pollution: Sources, atmospheric transport, and human health effects
Chapter by: Thurston, GD
in: International Encyclopedia of Public Health by Heggenhougen, Kris; Quah, Stella R [Eds]
Amsterdam ; Boston : Elsevier/Academic Press, 2008
pp. 700-712
ISBN: 9780122272257
CID: 653392
Characterization of PM2.5, gaseous pollutants, and meteorological interactions in the context of time-series health effects models
Ito, Kazuhiko; Thurston, George D; Silverman, Robert A
Associations of particulate matter (PM) and ozone with morbidity and mortality have been reported in many recent observational epidemiology studies. These studies often considered other gaseous co-pollutants also as potential confounders, including nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). However, because each of these air pollutants can have different seasonal patterns and chemical interactions, the estimation and interpretation of each pollutant's individual risk estimates may not be straightforward. Multi-collinearity among the air pollution and weather variables also leaves the possibility of confounding and over- or under-fitting of meteorological variables, thereby potentially influencing the health effect estimates for the various pollutants in differing ways. To investigate these issues, we examined the temporal relationships among air pollution and weather variables in the context of air pollution health effects models. We compiled daily data for PM less than 2.5 mum (PM2.5), ozone, NO2, SO2, CO, temperature, dew point, relative humidity, wind speed, and barometric pressure for New York City for the years 1999-2002. We conducted several sets of analyses to characterize air pollution and weather data interactions, to assess different aspects of these data issues: (1) spatial/temporal variation of PM2.5 and gaseous pollutants measured at multiple monitors; (2) temporal relationships among air pollution and weather variables; and (3) extent and nature of multi-collinearity of air pollution and weather variables in the context of health effects models. The air pollution variables showed a varying extent of intercorrelations with each other and with weather variables, and these correlations also varied across seasons. For example, NO2 exhibited the strongest negative correlation with wind speed among the pollutants considered, while ozone's correlation with PM2.5 changed signs across the seasons (positive in summer and negative in winter). The extent of multi-collinearity problems also varied across pollutants and choice of health effects models commonly used in the literature. These results indicate that the health effects regression need to be run by season for some pollutants to provide the most meaningful results. We also find that model choice and interpretation needs to take into consideration the varying pollutant concurvities with the model co-variables in each pollutant's health effects model specification. Finally, we provide an example for analysis of associations between these air pollutants and asthma emergency department visits in New York City, which evaluate the relationship between the various pollutants' risk estimates and their respective concurvities, and discuss the limitations that these results imply about the interpretability of multi-pollutant health effects models
PMID: 18079764
ISSN: 1559-064x
CID: 78017
Panel discussion review: session two--interpretation of observed associations between multiple ambient air pollutants and health effects in epidemiologic analyses
Kim, Jee Young; Burnett, Richard T; Neas, Lucas; Thurston, George D; Schwartz, Joel; Tolbert, Paige E; Brunekreef, Bert; Goldberg, Mark S; Romieu, Isabelle
Air pollution epidemiologic research has often utilized ambient air concentrations measured from centrally located monitors as a surrogate measure of exposure to these pollutants. Associations between these ambient concentrations and health outcomes such as lung function, hospital admissions, and mortality have been examined in short- and long-term cohort studies as well as in time-series and case-crossover studies. The issues related to interpreting the observed associations of ambient air pollutants with health outcomes were discussed at the US EPA sponsored workshop on December 13 and 14, 2006 in Chapel Hill, North Carolina, USA. The second session of this workshop focused on the following topics: (1) statistical methodology and study designs that may improve understanding of multipollutant health effects; (2) ambient concentrations as surrogate measures of pollutant mixtures; and (3) source-focused epidemiologic research. New methodology and approaches to better distinguish the effects of individual pollutants include multicity hierarchical modeling and the use of case-crossover analysis to control for copollutants. An alternative approach is to examine the mixture as a whole using principal component analysis. Another important consideration is to what extent the observed health associations are attributable to individual pollutants, which are often from common sources and are correlated, versus the pollutant mixtures that the pollutants are representing. For example, several ambient air concentrations, such as particulate matter mass, nitrogen dioxide, and carbon monoxide, may be serving as surrogate measures of motor vehicle exhaust. Source apportionment analysis is one method that may allow further advancement in understanding the source components that contribute to multipollutant health effects
PMID: 18079769
ISSN: 1559-064x
CID: 96453
Air pollution, human health, climate change and you [Editorial]
Thurston, George
PMCID:2117317
PMID: 17726169
ISSN: 0040-6376
CID: 74210