Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:korals01

Total Results:

128


Activation of Stat3 signaling in AgRP neurons promotes locomotor activity

Mesaros, Andrea; Koralov, Sergei B; Rother, Eva; Wunderlich, F Thomas; Ernst, Marianne B; Barsh, Gregory S; Rajewsky, Klaus; Bruning, Jens C
Leptin, an adipocyte-derived hormone, acts on hypothalamic neurons located in the arcuate nucleus (ARC) of the hypothalamus to regulate energy homeostasis. One of the leptin-regulated neuronal subtypes in the ARC are agouti-related peptide (AgRP)-expressing neurons, which are involved in the regulation of food intake and are directly inhibited by leptin. Leptin activates the signal transducer and activator of transcription 3 (Stat3), but the role of Stat3 in the regulation of AgRP neurons is unclear. Here we show that mice expressing a constitutively active version of Stat3 selectively in AgRP neurons are lean and exhibit relative resistance to diet-induced obesity. Surprisingly, this phenotype arises from increased locomotor activity in the presence of unaltered AgRP expression. These data demonstrate that Stat3-dependent signaling in AgRP neurons in the ARC controls locomotor activity independently of AgRP regulation
PMID: 18316029
ISSN: 1550-4131
CID: 114349

Spontaneous class switch recombination in B cell lymphopoiesis generates aberrant switch junctions and is increased after VDJ rearrangement

Edry, Efrat; Koralov, Sergei B; Rajewsky, Klaus; Melamed, Doron
Mature B cells replace the mu constant region of the H chain with a downstream isotype in a process of class switch recombination (CSR). Studies suggest that CSR induction is limited to activated mature B cells in the periphery. Recently, we have shown that CSR spontaneously occur in B lymphopoiesis. However, the mechanism and regulation of it have not been defined. In this study, we show that spontaneous CSR occurs at all stages of B cell development and generates aberrant joining of the switch junctions as revealed by: 1) increased load of somatic mutations around the CSR break points, 2) reduced sequence overlaps at the junctions, and 3) excessive switch region deletion. In addition, we found that incidence of spontaneous CSR is increased in cells carrying VDJ rearrangements. Our results reveal major differences between spontaneous CSR in developing B cells and CSR induced in mature B cells upon activation. These differences can be explained by deregulated expression or function of activation-induced cytidine deaminase early in B cell development
PMID: 17982044
ISSN: 0022-1767
CID: 114347

Antibody repertoires generated by VH replacement and direct VH to JH joining

Koralov, Sergei B; Novobrantseva, Tatiana I; Konigsmann, Jessica; Ehlich, Andreas; Rajewsky, Klaus
The immunoglobulin heavy chain repertoire is generated by somatic rearrangement of variable (V(H)), diversity (D(H)), and joining (J(H)) elements. It can be further diversified by V(H) replacement, where nonrearranged V(H) genes invade preexisting V(H)D(H)J(H) joints. To study the impact and mechanism of V(H) replacement, we generated mice in which antibody production depends on the replacement of a nonproductive V(H)D(H)J(H) rearrangement inserted into its physiological position in the immunoglobulin heavy chain locus. In these mice a highly diverse heavy chain repertoire resulted from V(H) replacement and a second process of noncanonical V(D)J recombination, direct V(H) to J(H) joining. V(H) replacement rarely generated detectable sequence duplications but often proceeded through recombination between the conserved homologous sequences at the 3' end of V(H). Thus, V(H) replacement is an efficient mechanism of antibody diversification, and its impact on the overall antibody repertoire could be greater than anticipated because it frequently leaves no molecular footprint
PMID: 16860756
ISSN: 1074-7613
CID: 114338

Tracking germinal center B cells expressing germ-line immunoglobulin gamma1 transcripts by conditional gene targeting

Casola, Stefano; Cattoretti, Giorgio; Uyttersprot, Nathalie; Koralov, Sergei B; Seagal, Jane; Hao, Zhenyue; Waisman, Ari; Egert, Angela; Ghitza, Dvora; Rajewsky, Klaus
Germinal centers (GCs) represent the main sites for the generation of high-affinity, class-switched antibodies during T cell-dependent antibody responses. To study gene function specifically in GC B cells, we generated Cgamma1-cre mice in which the expression of Cre recombinase is induced by transcription of the Ig gamma1 constant region gene segment (Cgamma1). In these mice, Cre-mediated recombination at the fas, Igbeta, IgH, and Rosa26 loci occurred in GC B cells as early as 4 days after immunization with T cell-dependent antigens and involved >85% of GC B cells at the peak of the GC reaction. Less than 2% of IgM(+) B cells showed Cre-mediated recombination. These cells carried few Ig somatic mutations, expressed germ-line Cgamma1- and activation-induced cytidine deaminase-specific transcripts and likely include GC B cell founders and/or plasma cell precursors. Cre-mediated recombination involved most IgG1, but also a fraction of IgG3-, IgG2a-, IgG2b-, and IgA-expressing GC and post-GC B cells. This result indicates that a GC B cell can transcribe more than one downstream C(H) gene before undergoing class switch recombination. The efficient induction of Cre expression in GC B cells makes the Cgamma1-cre allele a powerful tool for the genetic analysis of these cells, as well as, in combination with a suitable marker for Cre-mediated recombination, the tracking of class-switched memory B and plasma cells in vivo. To expedite the genetic analysis of GC B cells, we have established Cgamma1-cre F(1) embryonic stem cells, allowing further rounds of gene targeting and the cloning of compound mutants by tetraploid embryo complementation
PMCID:1464351
PMID: 16651521
ISSN: 0027-8424
CID: 114337

Direct in vivo VH to JH rearrangement violating the 12/23 rule

Koralov, Sergei B; Novobrantseva, Tatiana I; Hochedlinger, Konrad; Jaenisch, Rudolf; Rajewsky, Klaus
V(D)J recombination at the immunoglobulin heavy chain (IgH) locus follows the 12/23 rule to ensure the correct assembly of the variable region gene segments. Here, we report characterization of an in vivo model that allowed us to study recombination violating the 12/23 rule, namely a mouse strain lacking canonical D elements in its IgH locus. We demonstrate that VH to JH joining can support the generation of all B cell subsets. However, the process is inefficient in that B cells and antibodies derived from the DH-less allele are not detectable if the latter is combined with a wild-type IgH allele. There is no preferential usage of any particular VH gene family or JH element in VHJH junctions, indicating that 23/23-guided recombination is possible, but is a low frequency event at the IgH locus in vivo
PMCID:1237122
PMID: 15699070
ISSN: 0022-1007
CID: 114332

Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2

Chen, Z; Koralov, S B; Kelsoe, G
The complement system enhances antibody responses to T-dependent antigens, but paradoxically, deficiencies in C1 and C4 are strongly linked to autoantibody production in humans. In mice, disruption of the C1qa gene also results in spontaneous autoimmunity. Moreover, deficiencies in C4 or complement receptors 1 and 2 (CR1/CR2) lead to reduced selection against autoreactive B cells and impaired humoral responses. These observations suggest that C1 and C4 act through CR1/CR2 to enhance humoral immunity and somehow suppress autoimmunity. Here we report high titers of spontaneous antinuclear antibody (ANA) in C4(-/)- mice. This systemic lupus erythematosus-like autoimmunity is highly penetrant; by 10 mo of age, all C4(-)(/)- females and most males produced ANA. In contrast, titers and frequencies of ANA in Cr2(-)(/)- mice, which are deficient in CR1 and CR2, never rose significantly above those in normal controls. Glomerular deposition of immune complexes (ICs), glomerulonephritis, and splenomegaly were observed in C4(-)(/)- but not Cr2(-)(/)- mice. C4(-)(/)-, but not Cr2(-)(/)-, mice accumulate activated T and B cells. Clearance of circulating ICs is impaired in preautoimmune C4(-)(/)-, but not Cr2(-)(/)-, mice. C4 deficiency causes spontaneous, lupus-like autoimmunity through a mechanism that is independent of CR1/CR2.
PMCID:2193358
PMID: 11067882
ISSN: 0022-1007
CID: 163314

Regulation of humoral immune responses by CD21/CD35

Chen, Z; Koralov, S B; Kelsoe, G
Before antigen-specific immunity arises, the complement system responds by activation through the classical and/or alternative pathways leading to the covalent deposition of complement fragments. Three models, not mutually exclusive, have been proposed to explain how these complement fragments interact with their receptors, CD21/CD35, to enhance humoral immune responses: i) CD21/CD35 retain and focus antigens for optimal presentation; ii) CD21/CD35 on B cells serve as enhancing co-receptors for B-cell antigen receptor (BCR) signaling; iii) CD21/CD35 regulate B-cell responses, by CD19 aggregation. The coreceptor model led us to predict that CD21/CD3 5 may lower the threshold of BCR affinity to diversify the repertoire of humoral immune responses, but surprisingly, CD21/CD3 5-deficient mice expressing a transgenic BCR with very low affinity (Kalpha approximately =1.2 x 10(5) M(-1)) for the (4-hydroxy-3-nitrophenyl)acetyl hapten generated significant antibody and germinal center responses to even low doses of antigens in alum. The magnitudes of these responses were much below those of normal controls but higher doses of antigens substantially rectified these deficits. Thus, while CD21/CD35 play important roles in humoral immunity, our observations provide little support to the hypothesis that CD21/CD35 promote clonal diversity in immune responses by helping recruit low-affinity B cells.
PMID: 11043778
ISSN: 0105-2896
CID: 163315

Humoral immune responses in Cr2-/- mice: enhanced affinity maturation but impaired antibody persistence

Chen, Z; Koralov, S B; Gendelman, M; Carroll, M C; Kelsoe, G
Deficiency in CD21/CD35 by disruption of the Cr2 loci leads to impaired humoral immune responses. In this study, we detail the role of CD21/CD35 on Ab responses to the hapten (4-hydroxy-3-nitrophenyl)acetyl conjugated to chicken gamma-globulin. Surprisingly, Cr2-/- mice generate significant Ab responses and germinal center (GC) reactions to low doses of this Ag in alum, although the magnitude of their responses is much reduced in comparison with those of Cr2+/- and C57BL/6 controls. Increasing Ag dose partially corrected this deficit. In situ study of the somatic genetics of GC B cells demonstrated that VDJ hypermutation does not require CD21/CD35, and Cr2-/- mice exhibited enhanced affinity maturation of serum Ab in the post-GC phase of the primary response. On the other hand, Cr2-/- mice displayed accelerated loss of serum Ab and long-lived Ab-forming cells. These observations suggest that B cell activation/survival signals mediated by CD21 and/or the retention of Ag by CD21/CD35 play important roles in the generation, quality, and maintenance of serum Ab.
PMID: 10779753
ISSN: 0022-1767
CID: 163316