Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:sigure01

Total Results:

162


Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging

Wadghiri, Youssef Zaim; Sigurdsson, Einar M; Sadowski, Marcin; Elliott, James I; Li, Yongsheng; Scholtzova, Henrieta; Tang, Cheuk Ying; Aguinaldo, Gilbert; Pappolla, Miguel; Duff, Karen; Wisniewski, Thomas; Turnbull, Daniel H
The presence of amyloid-beta (Abeta) plaques in the brain is a hallmark pathological feature of Alzheimer's disease (AD). Transgenic mice overexpressing mutant amyloid precursor protein (APP), or both mutant APP and presenilin-1 (APP/PS1), develop Abeta plaques similar to those in AD patients, and have been proposed as animal models in which to test experimental therapeutic approaches for the clearance of Abeta. However, at present there is no in vivo whole-brain imaging method to detect Abeta plaques in mice or men. A novel method is presented to detect Abeta plaques in the brains of transgenic mice by magnetic resonance microimaging (muMRI). This method uses Abeta1-40 peptide, known for its high binding affinity to Abeta, magnetically labeled with either gadolinium (Gd) or monocrystalline iron oxide nanoparticles (MION). Intraarterial injection of magnetically labeled Abeta1-40, with mannitol to transiently open the blood-brain barrier (BBB), enabled the detection of many Abeta plaques. Furthermore, the numerical density of Abeta plaques detected by muMRI and by immunohistochemistry showed excellent correlation. This approach provides an in vivo method to detect Abeta in AD transgenic mice, and suggests that diagnostic MRI methods to detect Abeta in AD patients may ultimately be feasible
PMID: 12876705
ISSN: 0740-3194
CID: 38795

Anti-prion antibodies for prophylaxis following prion exposure in mice

Sigurdsson, Einar M; Sy, Man-Sun; Li, Ruliang; Scholtzova, Henrieta; Kascsak, Richard J; Kascsak, Regina; Carp, Richard; Meeker, Harry C; Frangione, Blas; Wisniewski, Thomas
Prion disease is characterized by a conformational change of the normal form of the prion protein (PrP(C)) to the scrapie-associated form (PrP(Sc)). Since the emergence of new variant Creutzfeldt-Jakob disease a potentially large human population is at risk for developing prion disease. Currently, no effective treatment or form of post-exposure prophylaxis is available for prion disease. We recently showed that active immunization with recombinant PrP prolongs the incubation period of scrapie. Here we show that anti-PrP antibodies following prion exposure are effective at increasing the incubation period of the infection. Stimulation of the immune system is an important therapeutic target for the prion diseases, as well as for other neurodegenerative illnesses characterized by abnormal protein conformation
PMCID:4662438
PMID: 12505623
ISSN: 0304-3940
CID: 34146

Blocking apolipoprotein E/beta-amyloid interaction as a therapeutic approach for Alzheimer's disease

Sadowski, Marcin; Ji, Yong; Scholtzova, Henrieta; Sigurdsson, Einar M.; Wisniewski, Thomas
BIOSIS:PREV200300192059
ISSN: 0028-3878
CID: 97613

Inhibition of apolipoprotein E binding to amyloid - beta decreases fibril formation and deposition in vitro and in vivo [Meeting Abstract]

Sadowski, M.; Ji, Y.; Scholtzova, H.; Pankiewicz, J.; Sigurdsson, E. M.; Wisniewski, T.
Deposition of amyloid-beta (Abeta) in form of the senile plaques and in vessel walls is a hallmark of Alzheimer's disease (AD). Apolipoprotein E (apoE) is known to act as a pathological chaperone by increasing the beta-sheet content of Abeta, promoting its fibrillization, toxicity, and deposition in the brain. ApoE binds to residues 12-28 of Abeta. We report in vitro and in vivo data on the blocking of the apoE/Abeta interaction by a synthetic peptide homologues to residues 12-28 of Abeta. To eliminate any residual toxicity and fibrillogenic potential the peptide sequence was altered by replacing a valine in position 18 by a proline (Abeta12-28P). On ELISA Abeta12-28P demonstrates high affinity binding to apoE and in competitive binding experiments inhibits the binding of apoE to Abeta42. Abeta12-28P also reduces the toxicity of Abeta in cell culture, as well as blocking the enhanced fibril formation of Abeta in the presence of apoE4, measured by the Thioflavin-T assay. The in vivo effect of Abeta12-28P was assessed in double transgenic (Tg) APP/PS1 AD mice which received 1mg of Abeta12-28P or placebo three times a week for four weeks. There was an approximately five fold reduction of the total and fibrillar Abeta in treated mice comparing to control (p<0.05). Also, Abeta40 and Abeta42 levels in the brain demonstrated a 40-60% reduction of both species in the total Abeta fraction and in the soluble Abeta fraction in treated mice comparing to controls. No significant titer of anti-Abeta antibodies in treated animals was detected, indicating that the effect of Abeta12-28P on Abeta deposition observed in vivo is not immune mediated. Overall, compounds blocking the interaction between Abeta and its pathological chaperones such as apoE (or alpha1anti-chymotrypsin, perlecan etc.) can be considered as an alternative approach for the treatment of beta-amyloidosis in AD
BIOSIS:PREV200400203383
ISSN: 1558-3635
CID: 97615

in vivo magnetic resonance imaging of amyloid plaques in AD model mice [Meeting Abstract]

Wisniewski, T.; Sigurdsson, E. M.; Wadghiri, Y. Z.; Sadowski, M.; Scholtzova, H.; Tang, C. Y.; Aguilnaldo, G.; Duff, K.; Turnbull, D. H.
Amyloid deposition in Alzheimer's disease (AD) occurs many years before cognitive impairment. Brain imaging techniques targeting plaques will have an important diagnostic value and may help in identifying individuals in preclinical stages of AD. Magnetic resonance imaging (MRI) has a much higher resolution than positron enhanced tomography (PET) imaging and, therefore, is a more sensitive method to detect amyloid plaques. In our initial proof-of-concept studies (Magnetic Resonance in Medicine, in press), we utilized Abeta1-40 peptide, labeled with gadolinium or monocrystalline iron oxide nanoparticles (MION). When either of these ligands is injected in vivo systemically with mannitol to transiently open the blood-brain-barrier, we are able to image ex vivo the majority of Abeta plaques in Tg mice. Using Gd labeled Abeta1-40 and in vivo muMRI, we can also detect a substantial percentage of amyloid lesions. There is a high correlation between the numerical density of Abeta plaques detected by muMRI and by immunohistochemistry. Clinical use of Abeta1-40 is not feasible because it may add to the plaque burden. As a safer approach, we are using gadolinium labeled K6Abeta1-30, a non-toxic Abeta derivative with low propensity to form beta-sheet, while maintaining high affinity for Abeta. Our initial findings indicate that this compound has a similar effect as gadolinium labeled Abeta1-40 in allowing in vivo detection of amyloid plaques in Tg mice. We are currently exploring various ways to enhance the uptake of this compound into the brain. This approach may lead to a diagnostic MRI method to detect Abetaplaques in AD patients
BIOSIS:PREV200400196138
ISSN: 1558-3635
CID: 97618

Immunization approaches for the treatment of prion disease

Wisniewski, Thomas; Sy, Man-Sun; Sadowski, Marcin; Kascsak, Richard J.; Kascsak, Regina; Carp, Richard; Goni, Fernando; Sigurdsson, Einar
BIOSIS:PREV200300192522
ISSN: 0028-3878
CID: 97619

Immunization with amyloid - beta derivatives improves cognition while provoking a weak antibody response [Meeting Abstract]

Knudsen, E. L.; Wisniewski, T.; Quartermain, D.; Sage, D.; Scholtzova, H.; Frangione, B.; Sigurdsson, E. M.
We have reported that an amyloid-beta derivative, K6Abeta1-30-NH2 reduces amyloid burden in mice to a similar extent as previously shown for Abeta1-42 (Am J Pathol 159:439-47,2001). This derivative may be a safer alternative to Alzheimer's vaccination with Abeta1-42 because it has a low beta-sheet content while maintaining the main antigenic sites of Abeta. To determine the in vivo effect of other derivatives with similar in vitro properties, we immunized Tg2576 mice with Abeta1-30-NH2, in which amino acids 18 and 19 were substituted with glutamate (Abeta1-30E18E19). In a parallel study, mice were immunized with K6Abeta1-30E18E19. Freund's adjuvant was used to allow a comparison with our findings with K6Abeta1-30-NH2. Antibody titers were detectable, but much lower than we had observed for K6Abeta1-30-NH2 or Abeta1-42, indicating that the central hydrophobic region of Abeta may have an epitope important for modulating humoral response. Cognitive performance was assessed in a radial arm maze before sacrifice at 19-21 months. Control Tg mice had more errors than their wild-type littermates (p<0.01), and the Abeta1-30E18E19-treated mice (p<0.05). Mice receiving K6Abeta1-30E18E19 also performed better than their Tg controls (p<0.05). Histologically, no difference was observed in brain amyloid plaque burden in 6E10 stained brain sections from the Abeta1-30E18E19-vaccinated mice, compared to vehicle treated mice. Furthermore, amyloid burden did not correlate with cognitive performance. Analysis of plaque burden in the K6Abeta1-30E18E19-immunized mice is underway, as well as measurements of brain levels of Abeta to determine if these values will provide a better correlation with cognitive performance. A robust antibody response and a diminished plaque burden may not be necessary for a therapeutic effect of Abeta derived vaccines
BIOSIS:PREV200400194897
ISSN: 1558-3635
CID: 97630

Copper modulates prion infectivity [Meeting Abstract]

Sigurdsson, E. M.; Brown, D.; Alim, M. A.; Scholtzova, H.; Carp, R.; Meeker, H. C.; Prelli, F.; Frangione, B.; Wisniewski, T.
The prion protein (PrP) is a copper binding protein; however, the role of copper in prion infection is unclear. Under some conditions copper facilitates refolding of denatured PrPSc into a protease resistant and infectious form. Hence copper may enhance the infectivity of the prion protein. To determine the feasibility of copper targeted therapy for prion disease, we treated mice (n=10 per group) with d-penicillamine (d-PEN; 100 mg/kg, i.p.), immediately following scrapie inoculation (139A strain, i.p.). Subsequent drug injections were daily, five days per week. d-PEN delayed the onset of prion disease in the mice (p=0.002). The effect was more pronounced at the 1000-fold dilution of agent (d-PEN=179 +- 3 days, VEH=165 +- 4, p=0.006), but a trend for a delay was observed at the 10-fold dilution (d-PEN=153 +- 2, VEH=146 +- 3, p=0.1). As expected, d-PEN reduced brain copper levels (p<0.01) by 26% (10-fold dil.; p=0.04) and 32% (1000-fold dil.; p=0.02), compared to control animals. Brain levels of iron and zinc were not reduced. To further support the notion that the therapeutic effect of d-PEN was mediated through its copper chelating properties, brain homogenates from terminally ill 139A infected mice were incubated with copper and d-PEN. Following a 72 h incubation, copper sulfate increased aggregation of the prion protein in a dose dependent manner, resulting in an enhanced resistance to proteinase K. This effect was counteracted by co-incubation with d-PEN. These findings support the proposed in vivo effect of d-PEN in delaying the onset of prion disease in these mice. Copper chelator-based therapy may benefit those incubating prion disease but this approach may be more effective at higher doses and/or in a multi-targeted combinational therapy
BIOSIS:PREV200400202959
ISSN: 1558-3635
CID: 97631

A safer vaccine for Alzheimer's disease?

Sigurdsson, Einar M; Wisniewski, Thomas; Frangione, Blas
Recent reports indicate that amyloid-beta (Abeta) vaccine-based therapy for Alzheimer's disease (AD) may be on the horizon. There are, however, concerns about the safety of this approach. Immunization with Abeta1-42 may not be appropriate in humans because it crosses the blood-brain barrier, can seed fibril formation, and is highly fibrillogenic. Abeta1-42 fibrils can in turn cause inflammation and neurotoxicity. This issue is of a particular concern in the elderly who often do not mount an adequate immune response to vaccines. Our findings show that vaccination with nonamyloidogenic/nontoxic Abeta derivative may be a safer therapeutic approach to impede the progression of Abeta-related histopathology in AD. Although the site of action of the anti-Abeta antibodies has been suggested to be within the brain, peripheral clearance of Abeta may have a greater role in reducing cerebral amyloid plaques in these animals and eventually in AD patients. Antibodies in general are predominantly found outside the central nervous system (CNS) and will, therefore, primarily clear systemic Abeta compared to brain Abeta. This disruption of the equilibrium between central and peripheral Abeta should then result in efflux of Abeta out of the brain, and subsequent removal of plaques. Abeta therapy can be targeted to the periphery, which may result in fewer CNS side effects, such as inflammation. Future Abeta derived vaccines should include T(h) epitopes, carriers and/or lipid moieties to enhance antibody production in the elderly, the population predominantly affected by AD
PMID: 12470795
ISSN: 0197-4580
CID: 32918

Molecular targeting of Alzheimer's amyloid plaques for contrast-enhanced magnetic resonance imaging

Poduslo, Joseph F; Wengenack, Thomas M; Curran, Geoffry L; Wisniewski, Thomas; Sigurdsson, Einar M; Macura, Slobodon I; Borowski, Bret J; Jack, Clifford R Jr
Smart molecular probes for both diagnostic and therapeutic purposes are expected to provide significant advances in clinical medicine and biomedical research. We describe such a probe that targets beta-amyloid plaques of Alzheimer's disease and is detectable by magnetic resonance imaging (MRI) because of contrast imparted by gadolinium labeling. Three properties essential for contrast enhancement of beta-amyloid plaques on MRI exist in this smart molecular probe, putrescine-gadolinium-amyloid-beta peptide: (1) transport across the blood-brain barrier following intravenous injection conferred by the polyamine moiety, (2) binding to plaques with molecular specificity by putrescine-amyloid-beta, and (3) magnetic resonance imaging contrast by gadolinium. MRI was performed on ex vivo tissue specimens at 7 T at a spatial resolution approximating plaque size (62.5 microm(3)), in order to prove the concept that the probe, when administered intravenously, can selectively enhance plaques. The plaque-to-background tissue contrast-to-noise ratio, which was precisely correlated with histologically stained plaques, was enhanced more than nine-fold in regions of cortex and hippocampus following intravenous administration of this probe in AD transgenic mice. Continuing engineering efforts to improve spatial resolution are underway in MRI, which may enable in vivo imaging at the resolution of individual plaques with this or similar contrast probes. This could enable early diagnosis and also provide a direct measure of the efficacy of anti-amyloid therapies currently being developed
PMID: 12505424
ISSN: 0969-9961
CID: 62132