Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:castef01

Total Results:

411


APOE*E2 allele delays age of onset in PSEN1 E280A Alzheimer's disease

Velez, J I; Lopera, F; Sepulveda-Falla, D; Patel, H R; Johar, A S; Chuah, A; Tobon, C; Rivera, D; Villegas, A; Cai, Y; Peng, K; Arkell, R; Castellanos, F X; Andrews, S J; Silva Lara, M F; Creagh, P K; Easteal, S; de Leon, J; Wong, M L; Licinio, J; Mastronardi, C A; Arcos-Burgos, M
Alzheimer's disease (AD) age of onset (ADAOO) varies greatly between individuals, with unique causal mutations suggesting the role of modifying genetic and environmental interactions. We analyzed ~50 000 common and rare functional genomic variants from 71 individuals of the 'Paisa' pedigree, the world's largest pedigree segregating a severe form of early-onset AD, who were affected carriers of the fully penetrant E280A mutation in the presenilin-1 (PSEN1) gene. Affected carriers with ages at the extremes of the ADAOO distribution (30s-70s age range), and linear mixed-effects models were used to build single-locus regression models outlining the ADAOO. We identified the rs7412 (APOE*E2 allele) as a whole exome-wide ADAOO modifier that delays ADAOO by ~12 years (beta=11.74, 95% confidence interval (CI): 8.07-15.41, P=6.31 x 10-8, PFDR=2.48 x 10-3). Subsequently, to evaluate comprehensively the APOE (apolipoprotein E) haplotype variants (E1/E2/E3/E4), the markers rs7412 and rs429358 were genotyped in 93 AD affected carriers of the E280A mutation. We found that the APOE*E2 allele, and not APOE*E4, modifies ADAOO in carriers of the E280A mutation (beta=8.24, 95% CI: 4.45-12.01, P=3.84 x 10-5). Exploratory linear mixed-effects multilocus analysis suggested that other functional variants harbored in genes involved in cell proliferation, protein degradation, apoptotic and immune dysregulation processes (i.e., GPR20, TRIM22, FCRL5, AOAH, PINLYP, IFI16, RC3H1 and DFNA5) might interact with the APOE*E2 allele. Interestingly, suggestive evidence as an ADAOO modifier was found for one of these variants (GPR20) in a set of patients with sporadic AD from the Paisa genetic isolate. This is the first study demonstrating that the APOE*E2 allele modifies the natural history of AD typified by the age of onset in E280A mutation carriers. To the best of our knowledge, this is the largest analyzed sample of patients with a unique mutation sharing uniform environment. Formal replication of our results in other populations and in other forms of AD will be crucial for prediction, follow-up and presumably developing new therapeutic strategies for patients either at risk or affected by AD.Molecular Psychiatry advance online publication, 1 December 2015; doi:10.1038/mp.2015.177.
PMCID:5414071
PMID: 26619808
ISSN: 1476-5578
CID: 1863252

Intrinsic Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Science in Development

Castellanos, F Xavier; Aoki, Yuta
Functional magnetic resonance imaging (fMRI) without an explicit task, i.e., resting state fMRI, of individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) is growing rapidly. Early studies were unaware of the vulnerability of this method to even minor degrees of head motion, a major concern in the field. Recent efforts are implementing various strategies to address this source of artifact along with a growing set of analytical tools. Availability of the ADHD-200 Consortium dataset, a large-scale multi-site repository, is facilitating increasingly sophisticated approaches. In parallel, investigators are beginning to explicitly test the replicability of published findings. In this narrative review, we sketch out broad, overarching hypotheses being entertained while noting methodological uncertainties. Current hypotheses implicate the interplay of default, cognitive control (frontoparietal) and attention (dorsal, ventral, salience) networks in ADHD; functional connectivities of reward-related and amygdala-related circuits are also supported as substrates for dimensional aspects of ADHD. Before these can be further specified and definitively tested, we assert the field must take on the challenge of mapping the "topography" of the analytical space, i.e., determining the sensitivities of results to variations in acquisition, analysis, demographic and phenotypic parameters. Doing so with openly available datasets will provide the needed foundation for delineating typical and atypical developmental trajectories of brain structure and function in neurodevelopmental disorders including ADHD when applied to large-scale multi-site prospective longitudinal studies such as the forthcoming Adolescent Brain Cognitive Development study.
PMCID:5047296
PMID: 27713929
ISSN: 2451-9022
CID: 2274272

Genetic and Environmental Contributions to Functional Connectivity Architecture of the Human Brain

Yang, Zhi; Zuo, Xi-Nian; McMahon, Katie L; Craddock, R Cameron; Kelly, Clare; de Zubicaray, Greig I; Hickie, Ian; Bandettini, Peter A; Castellanos, F Xavier; Milham, Michael P; Wright, Margaret J
One of the grand challenges faced by neuroscience is to delineate the determinants of interindividual variation in the comprehensive structural and functional connection matrices that comprise the human connectome. At present, this endeavor appears most tractable at the macroanatomic scale, where intrinsic brain activity exhibits robust patterns of synchrony that recapitulate core functional circuits at the individual level. Here, we use a classical twin study design to examine the heritability of intrinsic functional network properties in 101 twin pairs, including network activity (i.e., variance of a network's specific temporal fluctuations) and internetwork coherence (i.e., correlation between networks' specific temporal fluctuations). Five of 7 networks exhibited significantly heritable (23.3-65.2%) network activity, 6 of the 21 internetwork coherences were significantly heritable (25.6-42.0%), and 11 of the 21 internetwork coherences were significantly influenced by common environmental factors (18.0-47.1%). These results suggest that the source of interindividual variation in functional connectome has a modular architecture: individual modules represented by intrinsic connectivity networks are genetic controlled, while environmental factors influence the interplays between the modules. This work further provides network-specific hypotheses for discovery of the specific genetic and environmental factors influencing functional specialization and integration of the human brain.
PMCID:4830303
PMID: 26891986
ISSN: 1460-2199
CID: 2077982

Annual Research Review: Discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders: promises and limitations

Zhao, Yihong; Castellanos, F Xavier
BACKGROUND AND SCOPE: Psychiatric science remains descriptive, with a categorical nosology intended to enhance interobserver reliability. Increased awareness of the mismatch between categorical classifications and the complexity of biological systems drives the search for novel frameworks including discovery science in Big Data. In this review, we provide an overview of incipient approaches, primarily focused on classically categorical diagnoses such as schizophrenia (SZ), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD), but also reference convincing, if focal, advances in cancer biology, to describe the challenges of Big Data and discovery science, and outline approaches being formulated to overcome existing obstacles. FINDINGS: A paradigm shift from categorical diagnoses to a domain/structure-based nosology and from linear causal chains to complex causal network models of brain-behavior relationship is ongoing. This (r)evolution involves appreciating the complexity, dimensionality, and heterogeneity of neuropsychiatric data collected from multiple sources ('broad' data) along with data obtained at multiple levels of analysis, ranging from genes to molecules, cells, circuits, and behaviors ('deep' data). Both of these types of Big Data landscapes require the use and development of robust and powerful informatics and statistical approaches. Thus, we describe Big Data analysis pipelines and the promise and potential limitations in using Big Data approaches to study psychiatric disorders. CONCLUSION: We highlight key resources available for psychopathological studies and call for the application and development of Big Data approaches to dissect the causes and mechanisms of neuropsychiatric disorders and identify corresponding biomarkers for early diagnosis.
PMCID:4760897
PMID: 26732133
ISSN: 1469-7610
CID: 1901102

Imaging the "At-Risk" Brain: Future Directions

Koyama, Maki S; Di Martino, Adriana; Castellanos, Francisco X; Ho, Erica J; Marcelle, Enitan; Leventhal, Bennett; Milham, Michael P
OBJECTIVES: Clinical neuroscience is increasingly turning to imaging the human brain for answers to a range of questions and challenges. To date, the majority of studies have focused on the neural basis of current psychiatric symptoms, which can facilitate the identification of neurobiological markers for diagnosis. However, the increasing availability and feasibility of using imaging modalities, such as diffusion imaging and resting-state fMRI, enable longitudinal mapping of brain development. This shift in the field is opening the possibility of identifying predictive markers of risk or prognosis, and also represents a critical missing element for efforts to promote personalized or individualized medicine in psychiatry (i.e., stratified psychiatry). METHODS: The present work provides a selective review of potentially high-yield populations for longitudinal examination with MRI, based upon our understanding of risk from epidemiologic studies and initial MRI findings. RESULTS: Our discussion is organized into three topic areas: (1) practical considerations for establishing temporal precedence in psychiatric research; (2) readiness of the field for conducting longitudinal MRI, particularly for neurodevelopmental questions; and (3) illustrations of high-yield populations and time windows for examination that can be used to rapidly generate meaningful and useful data. Particular emphasis is placed on the implementation of time-appropriate, developmentally informed longitudinal designs, capable of facilitating the identification of biomarkers predictive of risk and prognosis. CONCLUSIONS: Strategic longitudinal examination of the brain at-risk has the potential to bring the concepts of early intervention and prevention to psychiatry. (JINS, 2016, 22, 164-179).
PMID: 26888614
ISSN: 1469-7661
CID: 1948912

Mode of Anisotropy Reveals Global Diffusion Alterations in Attention-Deficit/Hyperactivity Disorder

Yoncheva, Yuliya N; Somandepalli, Krishna; Reiss, Philip T; Kelly, Clare; Di Martino, Adriana; Lazar, Mariana; Zhou, Juan; Milham, Michael P; Castellanos, F Xavier
OBJECTIVE: Diffusion tensor imaging (DTI) can identify structural connectivity alterations in attention-deficit/hyperactivity disorder (ADHD). Most ADHD DTI studies have concentrated on regional differences in fractional anisotropy (FA) despite its limited sensitivity to complex white matter architecture and increasing evidence of global brain differences in ADHD. Here, we examine multiple DTI metrics in separate samples of children and adults with and without ADHD with a principal focus on global between-group differences. METHOD: Two samples: adults with ADHD (n = 42) and without (n = 65) and children with ADHD (n = 82) and without (n = 80) were separately group matched for age, sex, and head motion. Five DTI metrics (FA, axial diffusivity, radial diffusivity, mean diffusivity, and mode of anisotropy) were analyzed via tract-based spatial statistics. Group analyses tested for diagnostic differences at the global (averaged across the entire white matter skeleton) and regional level for each metric. RESULTS: Robust global group differences in diffusion indices were found in adults, with the largest effect size for mode of anisotropy (MA; Cohen's d = 1.45). Global MA also differed significantly between groups in the pediatric sample (d = 0.68). In both samples, global MA increased classification accuracy compared to the model with clinical Conners' ADHD ratings alone. Regional diagnostic differences did not survive familywise correction for multiple comparisons. CONCLUSION: Global DTI metrics, particularly the mode of anisotropy, which is sensitive to crossing fibers, capture connectivity abnormalities in ADHD across both pediatric and adult samples. These findings highlight potential diffuse white matter microarchitecture differences in ADHD.
PMCID:4760693
PMID: 26802781
ISSN: 1527-5418
CID: 1955332

Sleep and meal time misalignment alters intrinsic functional connectivity: A pilot resting state study [Meeting Abstract]

Yoncheva, Y N; Castellanos, F X; Pizinger, T; Kovtun, K; St-Onge, M
Introduction: Delayed sleep and meal timing promote metabolic dysregulation and obesity. Altered coordination of sleep and eating may impact food reward valuation in the brain; yet the independent and collective contribution of sleep and meal times remains unknown. This pilot, randomized crossover study manipulates both sleep and meal times while preserving normal sleep duration (8 h time in bed for 5 nights) to test how misalignment of sleeping and eating behaviors affects intrinsic functional connectivity (iFC) across reward and interoception-related brain circuitry. Methods: Resting state functional MRI scans (3T Siemens Skyra; TR = 2.5s; 2 x ~5-minute runs) were obtained for 4 participants (3 males; 25.3 +/- 4.6 years) who completed all 4 phases (normal sleep/normal meal; late sleep/normal meal; normal sleep/late meal; late sleep/late meal). Normal meal times were 1, 5, 11, and 12.5 h after awakening and late meal times were 4.5, 8.5, 14.5 and 16 h after awakening. For a priori selected regions-of-interest (seeds) relevant to food reward and interoception, each seed's iFC was calculated as the correlation between its time-series and that of every voxel, and then contrasted between conditions. Standard preprocessing and seed-based correlations used the Configurable Pipeline for the Analysis of Connectomes v0.3.9. Results: Statistically significant (p late) additionally significantly modulated iFC between left ventral striatum and precuneus. Other significant iFC modulations of components of reward and interoception circuitry will also be presented. Conclusion: These pilot findings provide support that misalignment of sleep and food timing alters iFC in regions relevant to food reward and interoception, motivating examination in a larger sample
EMBASE:72303028
ISSN: 1550-9109
CID: 2153012

Attention deficit hyperactivity disorder

Chapter by: Swanson, JM; Sergeant, JA; Taylor, EA; Sonuga-Barke, EJS; Jensen, PS; Castellanos, FX
in: Neuroscience in the 21st Century: From Basic to Clinical by
pp. 4027-4046
ISBN: 9781493934744
CID: 2585102

Attention networks

Chapter by: Barron, DS; Castellanos, FX
in: Neuroscience in the 21st Century: From Basic to Clinical by
pp. 1705-1719
ISBN: 9781493934744
CID: 2585092

Top-Down Dysregulation-From ADHD to Emotional Instability

Petrovic, Predrag; Castellanos, F Xavier
Deficient cognitive top-down executive control has long been hypothesized to underlie inattention and impulsivity in attention-deficit/hyperactivity disorder (ADHD). However, top-down cognitive dysfunction explains a modest proportion of the ADHD phenotype whereas the salience of emotional dysregulation is being noted increasingly. Together, these two types of dysfunction have the potential to account for more of the phenotypic variance in patients diagnosed with ADHD. We develop this idea and suggest that top-down dysregulation constitutes a gradient extending from mostly non-emotional top-down control processes (i.e., "cool" executive functions) to mainly emotional regulatory processes (including "hot" executive functions). While ADHD has been classically linked primarily to the former, conditions involving emotional instability such as borderline and antisocial personality disorder are closer to the other. In this model, emotional subtypes of ADHD are located at intermediate levels of this gradient. Neuroanatomically, gradations in "cool" processing appear to be related to prefrontal dysfunction involving dorsolateral prefrontal cortex (dlPFC) and caudal anterior cingulate cortex (cACC), while "hot" processing entails orbitofrontal cortex and rostral anterior cingulate cortex (rACC). A similar distinction between systems related to non-emotional and emotional processing appears to hold for the basal ganglia (BG) and the neuromodulatory effects of the dopamine system. Overall we suggest that these two systems could be divided according to whether they process non-emotional information related to the exteroceptive environment (associated with "cool" regulatory circuits) or emotional information related to the interoceptive environment (associated with "hot" regulatory circuits). We propose that this framework can integrate ADHD, emotional traits in ADHD, borderline and antisocial personality disorder into a related cluster of mental conditions.
PMCID:4876334
PMID: 27242456
ISSN: 1662-5153
CID: 2124762