Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:costam01

Total Results:

459


Associations between Arsenic Exposure and Global Posttranslational Histone Modifications among Adults in Bangladesh

Chervona, Yana; Hall, Megan N; Arita, Adriana; Wu, Fen; Sun, Hong; Tseng, Hsiang-Chi; Ali, Eunus; Uddin, Mohammad Nasir; Liu, Xinhua; Zoroddu, Maria Antonietta; Gamble, Mary V; Costa, Max
BACKGROUND: Exposure to arsenic (As) is associated with an increased risk of several cancers as well as cardiovascular disease, and childhood neuro-developmental deficits. Arsenic compounds are weakly mutagenic, alter gene expression and posttranslational histone modifications (PTHMs) in vitro. METHODS: Water and urinary As concentrations as well as global levels of histone 3 lysine 9 di-methylation and acetylation (H3K9me2 and H3K9ac), histone 3 lysine 27 tri-methylation and acetylation (H3K27me3 and H3K27ac), histone 3 lysine 18 acetylation (H3K18ac), and histone 3 lysine 4 trimethylation (H3K4me3) were measured in peripheral blood mononuclear cells (PBMC) from a subset of participants (N = 40) of a folate clinical trial in Bangladesh (FACT study). RESULTS: Total urinary As (uAs) was positively correlated with H3K9me2 (r = 0.36, P = 0.02) and inversely with H3K9ac (r = -0.47, P = 0.002). The associations between As and other PTHMs differed in a gender-dependent manner. Water As (wAs) was positively correlated with H3K4me3 (r = 0.45, P = 0.05) and H3K27me3 (r = 0.50, P = 0.03) among females and negatively correlated among males (H3K4me3: r = -0.44, P = 0.05; H3K27me3: r = -0.34, P = 0.14). Conversely, wAs was inversely associated with H3K27ac among females (r = -0.44, P = 0.05) and positively associated among males (r = 0.29, P = 0.21). A similar pattern was observed for H3K18ac (females: r = -0.22, P = 0.36; males: r = 0.27, P = 0.24). CONCLUSION: Exposure to As is associated with alterations of global PTHMs; gender-specific patterns of association were observed between As exposure and several histone marks. Impact: These findings contribute to the growing body of evidence linking As exposure to epigenetic dysregulation, which may play a role in the pathogenesis of As toxicity. Cancer Epidemiol Biomarkers Prev; 21(12); 2252-60. (c)2012 AACR.
PMCID:3518638
PMID: 23064002
ISSN: 1055-9965
CID: 202052

The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals

Chervona, Yana; Costa, Max
The harmful consequences of carcinogenic metals, such as nickel, arsenic, and chromium, are thought to be in part due to their ability to induce oxidative stress. The ubiquity of oxidative stress in biological systems has made it a fairly obvious culprit in causing cellular damage and/or development of disease. However, the full extent of oxidative stress-induced damage is not limited to its direct effects on cellular components, such as lipids, proteins, and DNA, but may extend to its ability to alter gene expression. Gene expression regulation is an important component of cellular and/or tissue homeostasis, and its alteration can have detrimental consequences. Therefore, a growing amount of interest is being paid to understanding how oxidative stress can influence gene expression. Oxidative stress-induced epigenetic dysregulation in the form of posttranslational histone modifications, in particular, is a popular topic of research. This review will therefore primarily focus on discussing the role of oxidative stress and hypoxia on histone methylation and/or gene expression alterations. The sources of oxidative stress discussed here are carcinogenic metals, such as, nickel, arsenic, and chromium.
PMCID:3432141
PMID: 22841757
ISSN: 0891-5849
CID: 177142

Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer

Clancy, Hailey A; Sun, Hong; Passantino, Lisa; Kluz, Thomas; Munoz, Alexandra; Zavadil, Jiri; Costa, Max
The complex process of carcinogenesis begins with transformation of a single cell to favor aberrant traits such as loss of contact inhibition and unregulated proliferation - features found in every cancer. Despite cancer's widespread prevalence, the early events that initiate cancer remain elusive, and without knowledge of these events cancer prevention is difficult. Here we show that exposure to As, Cr, Ni, or vanadium (V) promotes changes in gene expression that occur in conjunction with aberrant growth. We exposed immortalized human bronchial epithelial cells to one of four metals/metalloid for four to eight weeks and selected transformed clonal populations based upon anchorage independent growth of single cells in soft agar. We detected a metal-specific footprint of cancer-related gene expression that was consistent across multiple transformed clones. These gene expression changes persisted in the absence of the progenitor metal for numerous cell divisions. Our results show that even a brief exposure to a carcinogenic metal may cause many changes in gene expression in the exposed cells, and that from these many changes, the specific change(s) that each metal causes that initiate cancer likely arise.
PMCID:3563094
PMID: 22714537
ISSN: 1756-5901
CID: 174389

Source Apportionment and Elemental Composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia

Khodeir, Mamdouh; Shamy, Magdy; Alghamdi, Mansour; Zhong, Mianhua; Sun, Hong; Costa, Max; Chen, Lung-Chi; Maciejczyk, Polina
This paper presents the first comprehensive investigation of PM2.5 and PM10 composition and sources in Saudi Arabia. We conducted a multi-week multiple sites sampling campaign in Jeddah between June and September, 2011, and analyzed samples by XRF. The overall mean mass concentration was 28.4 ± 25.4 μg/m3 for PM2.5 and 87.3 ± 47.3 μg/m3 for PM10, with significant temporal and spatial variability. The average ratio of PM2.5/PM10 was 0.33. Chemical composition data were modeled using factor analysis with varimax orthogonal rotation to determine five and four particle source categories contributing significant amount of for PM2.5 and PM10 mass, respectively. In both PM2.5 and PM10 sources were (1) heavy oil combustion characterized by high Ni and V; (2) resuspended soil characterized by high concentrations of Ca, Fe, Al, and Si; and (3) marine aerosol. The two other sources in PM2.5 were (4) Cu/Zn source; (5) traffic source identified by presence of Pb, Br, and Se; while in PM10 it was a mixed industrial source. To estimate the mass contributions of each individual source category, the CAPs mass concentration was regressed against the factor scores. Cumulatively, resuspended soil and oil combustion contributed 77 and 82% mass of PM2.5 and PM10, respectively.
PMCID:3951168
PMID: 24634602
ISSN: 1309-1042
CID: 3559872

Cyclooxygenase-2 (COX-2) Mediates Arsenite Inhibition of UVB-Induced Cellular Apoptosis in Mouse Epidermal Cl41 Cells

Zuo, Z; Ouyang, W; Li, J; Costa, M; Huang, C
Inorganic arsenic is an environmental human carcinogen, and has been shown to act as a co-carcinogen with solar ultraviolet (UV) radiation in mouse skin tumor induction even at low concentrations. However, the precise mechanism of its co-carcinogenic action is largely unknown. Apoptosis plays an essential role as a protective mechanism against neoplastic development in the organism by eliminating genetically damaged cells. Thus, suppression of apoptosis is thought to contribute to carcinogenesis. It is known that cyclooxygenase-2 (COX-2) can promote carcinogenesis by inhibiting cell apoptosis under stress conditions; and our current studies investigated the potential contribution of COX-2 to the inhibitory effect of arsenite in UV-induced cell apoptosis in mouse epidermal Cl41 cells. We found that treatment of cells with low concentration (5 muM) arsenite attenuated cellular apoptosis upon UVB radiation accompanied with a coinductive effect on COX-2 expression and nuclear factor-kappaB (NFkappaB) transactivation. Our results also showed that the COX-2 induction by arsenite and UVB depended on an NFkappaB pathway because COX-2 co-induction could be attenuated in either p65-deficient or p50-deficient cells. Moreover, UVB-induced cell apoptosis could be dramatically reduced by the introduction of exogenous COX-2 expression, whereas the inhibitory effect of arsenite on UVB-induced cell apoptosis could be impaired in COX-2 knockdown C141 cells. Our results indicated that COX-2 mediated the anti-apoptotic effect of arsenite in UVB radiation through an NFkappaB-dependent pathway. Given the importance of apoptosis evasion during carcinogenesis, we anticipated that COX-2 induction might be at least partially responsible for the co-carcinogenic effect of arsenite on UVB-induced skin carcinogenesis.
PMCID:3782088
PMID: 22463588
ISSN: 1568-0096
CID: 170417

Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium

Chervona, Yana; Arita, Adriana; Costa, Max
Carcinogenic metals, such as nickel, arsenic, and chromium, are widespread environmental and occupational pollutants. Chronic exposure to these metals has been connected with increased risks of numerous cancers and as well as non-carcinogenic health outcomes, including cardiovascular disease, neurologic deficits, neuro-developmental deficits in childhood, and hypertension. However, currently the specific molecular targets for metal toxicity and carcinogenicity are not fully understood. Here, we propose that the iron- and 2-oxoglutarate-dependent dioxygenase family enzymes, as well as, other histone modifying enzymes are important intracellular targets that mediate the toxicity and carcinogenicity of nickel, and maybe potential targets in chromium and arsenic induced carcinogenesis. Our data demonstrate that all three metals are capable of inducing post-translational histone modifications and affecting the enzymes that modulate them (i.e. the iron- and 2-oxoglutarate-dependent dioxygenase family, including HIF-prolyl hydroxylase PHD2, histone demethylase JHDM2A/JMJD1A, and DNA repair enzymes ABH3 and ABH2, and histone methyltransferases, G9a). Given the effects that these metals can exert on the epigenome, future studies of their involvement in histone modifying enzymes dynamics would deepen our understanding on their respective toxicities and carcinogenicities.
PMCID:3687545
PMID: 22473328
ISSN: 1756-5901
CID: 171119

The effect of exposure to carcinogenic metals on histone tail modifications and gene expression in human subjects

Arita, Adriana; Shamy, Magdy Y; Chervona, Yana; Clancy, Harriet A; Sun, Hong; Hall, Megan N; Qu, Qingshan; Gamble, Mary V; Costa, Max
The precise mechanisms by which nickel and arsenic compounds exert their carcinogenic properties are not completely understood. In recent years, alterations of epigenetic mechanisms have been implicated in the carcinogenesis of compounds of these two metals. In vitro exposure to certain nickel or arsenic compounds induces changes in both DNA methylation patterns, as well as, in the levels of posttranslational modifications of histone tails. Changes in DNA methylation patterns have been reported in human subjects exposed to arsenic. Here we review our recent reports on the alterations in global levels of posttranslational histone modifications in peripheral blood mononuclear cells (PBMCs) of subjects with occupational exposure to nickel and subjects exposed to arsenic in their drinking water. Occupational exposure to nickel was associated with an increase in H3K4me3 and decrease in H3K9me2. A global increase in H3K9me2 and decrease in H3K9ac was found in subjects exposed to arsenic. Additionally, exposure to arsenic resulted in opposite changes in a number of histone modifications in males when compared with females in the arsenic population. The results of these two studies suggest that exposure to nickel or arsenic compounds, and possibly other carcinogenic metal compounds, can induce changes in global levels of posttranslational histone modifications in peripheral blood mononuclear cells.
PMCID:3620044
PMID: 22633395
ISSN: 0946-672x
CID: 169480

Elucidating the mechanisms of nickel compound uptake: A review of particulate and nano-nickel endocytosis and toxicity

Munoz, Alexandra; Costa, Max
Nickel (Ni) is a worldwide pollutant and contaminant that humans are exposed to through various avenues resulting in multiple toxic responses - most alarming is its clear carcinogenic nature. A variety of particulate Ni compounds persist in the environment and can be distinguished by characteristics such as solubility, structure, and surface charge. These characteristics influence cellular uptake and toxicity. Some particulate forms of Ni are carcinogenic and are directly and rapidly endocytized by cells. A series of studies conducted in the 1980s observed this process, and we have reanalyzed the results of these studies to help elucidate the molecular mechanism of particulate Ni uptake. Originally the process of uptake observed was described as phagocytosis, however in the context of recent research we hypothesize that the process is macropinocytosis and/or clathrin mediated endocytosis. Primary considerations in determining the route of uptake here include calcium dependence, particle size, and inhibition through temperature and pharmacological approaches. Particle characteristics that influenced uptake include size, charge, surface characteristics, and structure. This discussion is relevant in the context of nanoparticle studies and the emerging interest in nano-nickel (nano-Ni), where toxicity assessments require a clear understanding of the parameters of particulate uptake and where establishment of such parameters is often obscured through inconsistencies across experimental systems. In this regard, this review aims to carefully document one system (particulate nickel compound uptake) and characterize its properties.
PMCID:3306469
PMID: 22206756
ISSN: 0041-008x
CID: 162953

Global Levels of Histone Modifications in Peripheral Blood Mononuclear Cells of Subjects with Exposure to Nickel

Arita A; Niu J; Qu Q; Zhao N; Ruan Y; Nadas A; Chervona Y; Wu F; Sun H; Hayes RB; Costa M
Background: Occupational exposure to nickel is associated with an increased risk for lung and nasal cancers. Nickel compounds exhibit weak mutagenic activity, cause gene amplification, and disrupt cellular epigenetic homeostasis. However, the nickel-induced changes in global histone modification levels have only been tested in vitro. Objective: This study was conducted in a Chinese population to determine whether occupational exposure to nickel is associated with alterations of global histone modification levels and to evaluate the inter-and intra-individual variance of global histone modification levels. Method: 45 subjects with occupational exposure to nickel and 75 referents were recruited. Urinary nickel and global H3K4 trimethylation (H3K4me3), H3K9 acetylation (H3K9ac), and H3K9 dimethylation (H3K9me2) levels were measured in peripheral blood mononuclear cells (PBMCs) of subjects. Results: H3K4me3 was elevated (0.25%+/-0.11%, 0.15%+/-0.04%, p=0.0004) and H3K9me2 was decreased (0.11%+/-0.05%, 0.15%+/-0.04%, p=0.003) in Ni-exposed subjects. H3K4me3 was positively (r=0.4, p=0.0008) and H3K9ac was negatively (r=0.1, p=0.01) associated with urinary nickel. Inter-individual variances of H3K4me3, H3K9ac, and H3K9me2 were larger relative to intra-individual variance in both groups, resulting in reliability coefficients, estimate of consistency of a set of measurements, of 0.75, 0.74, and 0.97 for H3K4me3, H3K9ac, and H3K9me2, respectively, for referent subjects. Reliability coefficients of 0.60, 0.67, and 0.79 were found for H3K4me3, H3K9ac, and H3K9me2, respectively, for Ni-exposed subjects. Conclusion: The results of this study indicate that occupational exposure to nickel is associated with alterations of global histone modification levels and that measurements of global levels of histone modifications are relatively stable over time in human PBMCs
PMCID:3279455
PMID: 22024396
ISSN: 1552-9924
CID: 141421

Epigenomics: Pioneering a New Frontier in Cancer Research

Chervona, Yana; Costa, Max; Dai, Wei
PMCID:4118684
PMID: 25089224
ISSN: 2153-0645
CID: 1105232