Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:delmam01

Total Results:

173


Molecular composition of the intercalated disc in a spontaneous canine animal model of arrhythmogenic right ventricular dysplasia/cardiomyopathy

Oxford, Eva M; Everitt, Melanie; Coombs, Wanda; Fox, Philip R; Kraus, Marc; Gelzer, Anna R M; Saffitz, Jeffrey; Taffet, Steven M; Moise, N Sydney; Delmar, Mario
BACKGROUND: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is characterized by ventricular arrhythmias, sudden death, and fatty or fibrofatty replacement of right ventricular myocytes. Recent studies have noted an association between human ARVD/C and molecular remodeling of intercalated disc structures. However, progress has been constrained by limitations inherent to human studies. OBJECTIVE: We studied the molecular composition of the intercalated disc structure in a naturally occurring animal model of ARVD/C (Boxer dogs). METHODS: We studied hearts from 12 Boxers with confirmed ARVD/C and 2 controls. Ventricular sections from 4 animals were examined by immunofluorescent microscopy. Frozen tissue samples were used for Western blot analysis. Proteins investigated were N-cadherin, plakophilin 2, desmoplakin, plakoglobin, desmin, and connexin 43 (Cx43). RESULTS: In control dogs, all proteins tested by immunofluorescence analysis yielded intense localized signals at sites of end-to-end cell apposition. In contrast, myocardial tissues from ARVD/C-afflicted Boxers showed preservation of N-cadherin staining but loss of detectable signal for Cx43 at the intercalated disc location. Western blots indicated that the Cx43 protein was still present in the samples. Gene sequencing analysis showed no mutations in desmoplakin, plakoglobin, Cx43, or plakophilin 2. CONCLUSION: Mutation(s) responsible for ARVD/C in Boxers lead, directly or indirectly, to severe modifications of mechanical and electrical cell-cell interactions. Furthermore, significant reduction in gap junction formation may promote a substrate for malignant ventricular arrhythmias. This model may help to advance our understanding of the molecular basis, pathophysiology, and potential therapeutic approach to patients with ARVD/C
PMCID:2080779
PMID: 17765621
ISSN: 1547-5271
CID: 113851

Evidence for the presence of a free C-terminal fragment of cx43 in cultured cells

Joshi-Mukherjee, Rosy; Coombs, Wanda; Burrer, Christine; de Mora, Isabel Alvarez; Delmar, Mario; Taffet, Steven M
Migration of the gap junction protein connexin 43 (Cx43) in SDS-PAGE yields 2 to 4 distinct bands, detectable in the 40-47 kDa range. Here, we show that antibodies against the carboxy-terminal domain of Cx43 recognized an additional 20-kDa product. This protein was detected in some culture cell lysates. The presence of the 20-kDa band was not prevented by the use of protease inhibitors (Complete(R) and phenylmethylsulfonyl fluoride (PMSF), 1-5 mM). The band was absent from cells treated with Cx43-specific RNAi, and from those derived from Cx43-deficient mice, indicating that this Cx43-immunoreactive protein is a product of the Cx43 gene. Treatment of CHO cells with cyclosporin A caused a reduction in the amount of full-length Cx43 and a concomitant increase in the amount of the 20-kDa band. Overall, our data show that a fraction of the Cx43-immunoreactive protein pool within a given cell may correspond to a C-terminal fragment of the protein
PMID: 17668351
ISSN: 1541-9061
CID: 113853

Characterization of the pH-dependent interaction between the gap junction protein connexin43 carboxyl terminus and cytoplasmic loop domains

Hirst-Jensen, Bethany J; Sahoo, Prangya; Kieken, Fabien; Delmar, Mario; Sorgen, Paul L
A prevailing view regarding the regulation of connexin43 (Cx43) gap junction channels is that, upon intracellular acidification, the carboxyl-terminal domain (Cx43CT) moves toward the channel opening to interact with specific residues acting as a receptor site. Previous studies have demonstrated a direct, pH-dependent interaction between the Cx43CT and a Cx43 cytoplasmic loop (Cx43CL) peptide. This interaction was dependent on alpha-helical formation for the peptide in response to acidification; more recent studies have shown that acidification also induces Cx43CT dimerization. Whether Cx43CT dimerization is an important structural component in Cx43 regulation remains to be determined. Here we used an assortment of complimentary biophysical techniques to characterize the binding of Cx43CT or its mutants to itself and/or to a more native-like Cx43CL construct (Cx43CL(100-155), residues 100-155). Our studies expand the observation that specific Cx43CT domains are important for dimerization. We further show that properties of the Cx43CL(100-155) are different from those of the Cx43CL peptide; solvent acidification leads to Cx43CL(100-155) oligomerization and a change in the stoichiometry and binding affinity for the Cx43CT. Homo-Cx43CT and Cx43CL(100-155) oligomerization as well as the Cx43CT/Cx43CL(100-155) interaction can occur under in vivo conditions; moreover, we show that Cx43CL(100-155) strongly affects resonance peaks corresponding to Cx43CT residues Arg-376-Asp-379 and Asn-343-Lys-346. Overall, our data indicate that many of the sites involved in Cx43CT dimerization are also involved in the Cx43CT/Cx43CL interaction; we further propose that chemically induced Cx43CT and Cx43CL oligomerization is important for the interaction between these cytoplasmic domains, which leads to chemically induced gating of Cx43 channels
PMID: 17178730
ISSN: 0021-9258
CID: 113854

Effect of charge substitutions at residue his-142 on voltage gating of connexin43 channels

Shibayama, Junko; Gutierrez, Cristina; Gonzalez, Daniel; Kieken, Fabien; Seki, Akiko; Carrion, Jesus Requena; Sorgen, Paul L; Taffet, Steven M; Barrio, Luis C; Delmar, Mario
Previous studies indicate that the carboxyl terminal of connexin43 (Cx43CT) is involved in fast transjunctional voltage gating. Separate studies support the notion of an intramolecular association between Cx43CT and a region of the cytoplasmic loop (amino acids 119-144; referred to as 'L2'). Structural analysis of L2 shows two alpha-helical domains, each with a histidine residue in its sequence (H126 and H142). Here, we determined the effect of H142 replacement by lysine, alanine, and glutamate on the voltage gating of Cx43 channels. Mutation H142E led to a significant reduction in the frequency of occurrence of the residual state and a prolongation of dwell open time. Macroscopically, there was a large reduction in the fast component of voltage gating. These results resembled those observed for a mutant lacking the carboxyl terminal (CT) domain. NMR experiments showed that mutation H142E significantly decreased the Cx43CT-L2 interaction and disrupted the secondary structure of L2. Overall, our data support the hypothesis that fast voltage gating involves an intramolecular particle-receptor interaction between CT and L2. Some of the structural constrains of fast voltage gating may be shared with those involved in the chemical gating of Cx43
PMCID:1635665
PMID: 16963503
ISSN: 0006-3495
CID: 113855

Identification of a novel peptide that interferes with the chemical regulation of connexin43

Shibayama, Junko; Lewandowski, Rebecca; Kieken, Fabien; Coombs, Wanda; Shah, Sejal; Sorgen, Paul L; Taffet, Steven M; Delmar, Mario
The carboxyl-terminal domain of connexin43 (Cx43CT) is involved in various intra- and intermolecular interactions that regulate gap junctions. Here, we used phage display to identify novel peptidic sequences that bind Cx43CT and modify Cx43 regulation. We found that Cx43CT binds preferentially to peptides containing a sequence RXP, where X represents any amino acid and R and P correspond to the amino acids arginine and proline, respectively. A biased 'RXP library' led to the identification of a peptide (dubbed 'RXP-E') that bound Cx43CT with high affinity. Nuclear magnetic resonance data showed RXP-E-induced shifts in the resonance peaks of residues 343 to 346 and 376 to 379 of Cx43CT. Patch-clamp studies revealed that RXP-E partially prevented octanol-induced and acidification-induced uncoupling in Cx43-expressing cells. Moreover, RXP-E increased mean open time of Cx43 channels. The full effect of RXP-E was dependent on the integrity of the CT domain. These data suggest that RXP-based peptides could serve as tools to help determine the role of Cx43 as a regulator of function in conditions such as ischemia-induced arrhythmias
PMID: 16690883
ISSN: 1524-4571
CID: 113856

Bioelectricity

Delmar, Mario
PMID: 16399066
ISSN: 1547-5271
CID: 113857

Functional characterization of connexin43 mutations found in patients with oculodentodigital dysplasia

Shibayama, Junko; Paznekas, William; Seki, Akiko; Taffet, Steven; Jabs, Ethylin Wang; Delmar, Mario; Musa, Hassan
Specific mutations in GJA1, the gene encoding the gap junction protein connexin43 (Cx43), cause an autosomal dominant disorder called oculodentodigital dysplasia (ODDD). Here, we characterize the effects of 8 of these mutations on Cx43 function. Immunochemical studies have shown that most of the mutant proteins formed gap junction plaques at the sites of cell-cell apposition. However, 2 of the mutations (a codon duplication in the first extracellular loop, F52dup, and a missense mutation in the second extracellular loop, R202H, produced full-length connexins that failed to properly form gap junction plaques. Cx43 proteins containing ODDD mutations found in the N-terminus (Y17S), first transmembrane domain (G21R, A40V), second transmembrane domain (L90V), and cytoplasmic loop (I130T, K134E) do form gap junction plaques but show compromised channel function. L90V, I130T, and K134E demonstrated a significant decrease in junctional conductance relative to Cx43WT. Mutations Y17S, G21R, and A40V demonstrated a complete lack of functional electrical coupling even in the presence of significant plaque formation between paired cells. Heterologous channels formed by coexpression of Cx43WT and mutation R202H resulted in electrically functional gap junctions that were not permeable to Lucifer yellow. Therefore, the mutations found in ODDD not only cause phenotypic variability, but also result in various functional consequences. Overall, our data show an extensive range of molecular phenotypes, consistent with the pleiotropic nature of the clinical syndrome as a whole
PMID: 15879313
ISSN: 1524-4571
CID: 113858

Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1

Sorgen, Paul L; Duffy, Heather S; Sahoo, Prangya; Coombs, Wanda; Delmar, Mario; Spray, David C
Regulation of cell-cell communication by the gap junction protein connexin43 can be modulated by a variety of connexin-associating proteins. In particular, c-Src can disrupt the connexin43 (Cx43)-zonula occludens-1 (ZO-1) interaction, leading to down-regulation of gap junction intercellular communication. The binding sites for ZO-1 and c-Src correspond to widely separated Cx43 domains (approximately 100 residues apart); however, little is known about the structural modifications that may allow information to be transferred over this distance. Here, we have characterized the structure of the connexin43 carboxyl-terminal domain (Cx43CT) to assess its ability to interact with domains from ZO-1 and c-Src. NMR data indicate that the Cx43CT exists primarily as an elongated random coil, with two regions of alpha-helical structure. NMR titration experiments determined that the ZO-1 PDZ-2 domain affected the last 19 Cx43CT residues, a region larger than that reported to be required for Cx43CT-ZO-1 binding. The c-Src SH3 domain affected Cx43CT residues Lys-264-Lys-287, Ser-306-Glu-316, His-331-Phe-337, Leu-356-Val-359, and Ala-367-Ser-372. Only region Lys-264-Lys-287 contains the residues previously reported to act as an SH3 binding domain. The specificity of these interactions was verified by peptide competition experiments. Finally, we demonstrated that the SH3 domain could partially displace the Cx43CT-PDZ-2 complex. These studies represent the first structural characterization of a connexin domain when integrated in a multimolecular complex. Furthermore, we demonstrate that the structural characteristics of a disordered Cx43CT are advantageous for signaling between different binding partners that may be important in describing the mechanism of channel closure or internalization in response to pathophysiological stimuli
PMID: 15492000
ISSN: 0021-9258
CID: 113861

Modifications in the biophysical properties of connexin43 channels by a peptide of the cytoplasmic loop region

Seki, Akiko; Duffy, Heather S; Coombs, Wanda; Spray, David C; Taffet, Steven M; Delmar, Mario
Connexin43 (Cx43) channels reside in at least 3 states: closed, open, or residual. It is hypothesized that the residual state results from the interaction of an intracellular 'gating element' with structures at the vestibule of the pore. Recently, we showed in vitro that there is an intramolecular interaction of the carboxyl-terminal domain (referred to as 'CT') with a region in the cytoplasmic loop of Cx43 (amino acids 119 to 144; referred to as 'L2'). Here, we assessed whether the L2 region was able to interact with the gating particle in a functional channel. Cx43 channels were recorded in the presence of a peptide corresponding to the L2 region, delivered via the patch pipette. This manipulation did not modify unitary conductance, but decreased the frequency of transitions into the residual state, prolonged open time, and altered the voltage dependence of the channel in a manner analogous to that observed after truncation of the CT domain. The latter correlated with the ability of the peptide to bind to the CT domain, as determined by mirror resonance spectroscopy. Overall, we propose that the L2 acts as a 'receptor' that interacts with a flexible intracellular gating element during channel gating. The full text of this article is available online at http://circres.ahajournals.org
PMID: 15284189
ISSN: 1524-4571
CID: 113862

Loss of electrical communication, but not plaque formation, after mutations in the cytoplasmic loop of connexin43

Seki, Akiko; Coombs, Wanda; Taffet, Steven M; Delmar, Mario
OBJECTIVES: The aim of this study was to determine if the structural integrity of a region in the cytoplasmic loop (amino acids 119-144; region 'L2') of connexin43 (Cx43) is necessary to maintain normal channel function. BACKGROUND: Cx43 is the most abundant gap junction protein in the heart. The ability of these channels to close under pathologic conditions such as ischemia may be a key substrate for cardiac arrhythmias. Previous studies have shown that Cx43 regulation involves the intramolecular interaction of its carboxyl terminal domain (a 'gating particle') with a separate region of the molecule acting as a receptor. We recently proposed that a region in the cytoplasmic loop of Cx43 (amino acids 119-144; region 'L2') might function as a receptor. METHODS: Using site-directed mutagenesis and patch clamp analysis, as well as fluorescent microscopy, we examined gap junction plaque formation and channel properties of Cx43 L2 mutants. RESULTS: Deletions of 5 to 6 amino acids within the L2 domain interfered with the formation of functional gap junction channels, although gap junction plaques were clearly visible. Selected point mutations in the region (including those present in patients with oculodentodigital dysplasia) caused modifications ranging from complete channel closure to changes in unitary conductance. CONCLUSIONS: These results show that the L2 region is essential for maintenance of the normal architecture of the channel pore. This information is consistent with the notion that the L2 region could be a receptor for the carboxy terminal domain; the latter interaction would lead to channel closure under conditions such as myocardial ischemia and infarction
PMID: 15851157
ISSN: 1547-5271
CID: 113859