Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:met260

Total Results:

133


Improved combination of spiral-in/out images for BOLD fMRI

Glover, Gary H; Thomason, Moriah E
Acquisitions with the spiral-in/out technique result in two separate image timeseries obtained during the spiral-in and spiral-out trajectory. In uniform brain regions the two components have comparable signal and BOLD contrast and can be averaged, but in regions compromised by susceptibility effects where both signal and noise can differ in the two images other combination methods may be more effective. Here, several weighting schemes are compared for signal and activation contrast recovery in whole brain and prefrontal cortex using verbal working memory (seven subjects) and breathholding tasks (six subjects) scanned at 3 T. It was found that a statistically weighted combination based on activation maps derived separately from the spiral-in and spiral-out images provides activation volumes with increases of 33-59% over second-choice signal-weighted combination and 100-200% increases over spiral-out acquisition alone, and that simple averaging is inferior to signal-weighted combination.
PMID: 15065263
ISSN: 0740-3194
CID: 3149332

Comparison of spiral-in/out and spiral-out BOLD fMRI at 1.5 and 3 T

Preston, Alison R; Thomason, Moriah E; Ochsner, Kevin N; Cooper, Jeffrey C; Glover, Gary H
Spiral-in/out functional magnetic resonance imaging (fMRI) methods acquire one image before the echo time (TE) and a second image after TE during each scan. Weighted combination of the two images provides a time series with reduced susceptibility dropout in frontal and medial temporal regions as well as increased signal-to-noise ratio (SNR) in regions of uniform cortex. In this study, task activation with the spiral-in/out method was compared to that with conventional spiral-out acquisitions at two field strengths (1.5 and 3.0 T) using episodic memory encoding, verbal working memory, and affective processing tasks in eight human volunteers. With the conventional spiral-out sequence, greater signal dropout is observed in lateral and medial prefrontal, amygdalar, and medial temporal regions at 3 T relative to 1.5 T, whereas such dropout at 3 T is reduced or mitigated with the spiral-in/out method. Similarly, activation volumes for frontal, amygdalar, and medial temporal regions are reduced for spiral-out acquisitions relative to spiral-in/out, and this difference is more apparent at 3 T than at 1.5 T. In addition, significant regionally specific increases in Z scores are obtained with the spiral-in/out sequence relative to spiral-out acquisitions at both field strengths. It is concluded the spiral-in/out sequence may provide significant advantages over conventional spiral methods, especially at 3 T.
PMID: 14741667
ISSN: 1053-8119
CID: 3149322

Immature frontal lobe contributions to cognitive control in children: evidence from fMRI

Bunge, Silvia A; Dudukovic, Nicole M; Thomason, Moriah E; Vaidya, Chandan J; Gabrieli, John D E
Event-related fMRI was employed to characterize differences in brain activation between children ages 8-12 and adults related to two forms of cognitive control: interference suppression and response inhibition. Children were more susceptible to interference and less able to inhibit inappropriate responses than were adults. Effective interference suppression in children was associated with prefrontal activation in the opposite hemisphere relative to adults. In contrast, effective response inhibition in children was associated with activation of posterior, but not prefrontal, regions activated by adults. Children failed to activate a region in right ventrolateral prefrontal cortex that was recruited for both types of cognitive control by adults. Thus, children exhibited immature prefrontal activation that varied according to the type of cognitive control required.
PMCID:4535916
PMID: 11804576
ISSN: 0896-6273
CID: 3149312