Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:aifani01

Total Results:

251


TET1 is a tumor suppressor of hematopoietic malignancy

Cimmino, Luisa; Dawlaty, Meelad M; Ndiaye-Lobry, Delphine; Yap, Yoon Sing; Bakogianni, Sofia; Yu, Yiting; Bhattacharyya, Sanchari; Shaknovich, Rita; Geng, Huimin; Lobry, Camille; Mullenders, Jasper; King, Bryan; Trimarchi, Thomas; Aranda-Orgilles, Beatriz; Liu, Cynthia; Shen, Steven; Verma, Amit K; Jaenisch, Rudolf; Aifantis, Iannis
The methylcytosine dioxygenase TET1 ('ten-eleven translocation 1') is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.
PMCID:4545281
PMID: 25867473
ISSN: 1529-2916
CID: 1532762

Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia

Witkowski, M T; Cimmino, L; Hu, Y; Trimarchi, T; Tagoh, H; McKenzie, M D; Best, S A; Tuohey, L; Willson, T A; Nutt, S L; Busslinger, M; Aifantis, I; Smyth, G K; Dickins, R A
Activating NOTCH1 mutations occur in ~60% of human T-cell acute lymphoblastic leukemias (T-ALLs), and mutations disrupting the transcription factor IKZF1 (IKAROS) occur in ~5% of cases. To investigate the regulatory interplay between these driver genes, we have used a novel transgenic RNA interference mouse model to produce primary T-ALLs driven by reversible Ikaros knockdown. Restoring endogenous Ikaros expression in established T-ALL in vivo acutely represses Notch1 and its oncogenic target genes including Myc, and in multiple primary leukemias causes disease regression. In contrast, leukemias expressing high levels of endogenous or engineered forms of activated intracellular Notch1 (ICN1) resembling those found in human T-ALL rapidly relapse following Ikaros restoration, indicating that ICN1 functionally antagonizes Ikaros in established disease. Furthermore, we find that IKAROS mRNA expression is significantly reduced in a cohort of primary human T-ALL patient samples with activating NOTCH1/FBXW7 mutations, but is upregulated upon acute inhibition of aberrant NOTCH signaling across a panel of human T-ALL cell lines. These results demonstrate for the first time that aberrant NOTCH activity compromises IKAROS function in mouse and human T-ALL, and provide a potential explanation for the relative infrequency of IKAROS gene mutations in human T-ALL.
PMCID:4845663
PMID: 25655195
ISSN: 1476-5551
CID: 1616122

SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition

Kim, Eunhee; Ilagan, Janine O; Liang, Yang; Daubner, Gerrit M; Lee, Stanley C-W; Ramakrishnan, Aravind; Li, Yue; Chung, Young Rock; Micol, Jean-Baptiste; Murphy, Michele E; Cho, Hana; Kim, Min-Kyung; Zebari, Ahmad S; Aumann, Shlomzion; Park, Christopher Y; Buonamici, Silvia; Smith, Peter G; Deeg, H Joachim; Lobry, Camille; Aifantis, Iannis; Modis, Yorgo; Allain, Frederic H-T; Halene, Stephanie; Bradley, Robert K; Abdel-Wahab, Omar
Mutations affecting spliceosomal proteins are the most common mutations in patients with myelodysplastic syndromes (MDS), but their role in MDS pathogenesis has not been delineated. Here we report that mutations affecting the splicing factor SRSF2 directly impair hematopoietic differentiation in vivo, which is not due to SRSF2 loss of function. By contrast, SRSF2 mutations alter SRSF2's normal sequence-specific RNA binding activity, thereby altering the recognition of specific exonic splicing enhancer motifs to drive recurrent mis-splicing of key hematopoietic regulators. This includes SRSF2 mutation-dependent splicing of EZH2, which triggers nonsense-mediated decay, which, in turn, results in impaired hematopoietic differentiation. These data provide a mechanistic link between a mutant spliceosomal protein, alterations in the splicing of key regulators, and impaired hematopoiesis.
PMCID:4429920
PMID: 25965569
ISSN: 1878-3686
CID: 1578752

The methylcytosine dioxygenase tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells

Ichiyama, Kenji; Chen, Tingting; Wang, Xiaohu; Yan, Xiaowei; Kim, Byung-Seok; Tanaka, Shinya; Ndiaye-Lobry, Delphine; Deng, Yuhua; Zou, Yanli; Zheng, Pan; Tian, Qiang; Aifantis, Iannis; Wei, Lai; Dong, Chen
Epigenetic regulation of lineage-specific genes is important for the differentiation and function of T cells. Ten-eleven translocation (Tet) proteins catalyze 5-methylcytosine (5mC) conversion to 5-hydroxymethylcytosine (5hmC) to mediate DNA demethylation. However, the roles of Tet proteins in the immune response are unknown. Here, we characterized the genome-wide distribution of 5hmC in CD4(+) T cells and found that 5hmC marks putative regulatory elements in signature genes associated with effector cell differentiation. Moreover, Tet2 protein was recruited to 5hmC-containing regions, dependent on lineage-specific transcription factors. Deletion of Tet2 in T cells decreased their cytokine expression, associated with reduced p300 recruitment. In vivo, Tet2 plays a critical role in the control of cytokine gene expression in autoimmune disease. Collectively, our findings suggest that Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells.
PMCID:4956728
PMID: 25862091
ISSN: 1097-4180
CID: 1544192

Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia

Shih, Alan H; Jiang, Yanwen; Meydan, Cem; Shank, Kaitlyn; Pandey, Suveg; Barreyro, Laura; Antony-Debre, Ileana; Viale, Agnes; Socci, Nicholas; Sun, Yongming; Robertson, Alexander; Cavatore, Magali; de Stanchina, Elisa; Hricik, Todd; Rapaport, Franck; Woods, Brittany; Wei, Chen; Hatlen, Megan; Baljevic, Muhamed; Nimer, Stephen D; Tallman, Martin; Paietta, Elisabeth; Cimmino, Luisa; Aifantis, Iannis; Steidl, Ulrich; Mason, Chris; Melnick, Ari; Levine, Ross L
Specific combinations of acute myeloid leukemia (AML) disease alleles, including FLT3 and TET2 mutations, confer distinct biologic features and adverse outcome. We generated mice with mutations in Tet2 and Flt3, which resulted in fully penetrant, lethal AML. Multipotent Tet2(-/-);Flt3(ITD) progenitors (LSK CD48(+)CD150(-)) propagate disease in secondary recipients and were refractory to standard AML chemotherapy and FLT3-targeted therapy. Flt3(ITD) mutations and Tet2 loss cooperatively remodeled DNA methylation and gene expression to an extent not seen with either mutant allele alone, including at the Gata2 locus. Re-expression of Gata2 induced differentiation in AML stem cells and attenuated leukemogenesis. TET2 and FLT3 mutations cooperatively induce AML, with a defined leukemia stem cell population characterized by site-specific changes in DNA methylation and gene expression.
PMCID:4518555
PMID: 25873173
ISSN: 1878-3686
CID: 1532192

The Pre-BCR to the Rescue: Therapeutic Targeting of Pre-B Cell ALL

Trimarchi, Thomas; Aifantis, Iannis
Pre B-ALL is an aggressive cancer of the blood for which treatment of patients with relapsed and refractory disease remains a challenge. In this issue of Cancer Cell, Geng and colleagues surveyed the activation status of the pre-B cell receptor and comprehensively investigated downstream signaling mechanisms currently targetable with small molecule inhibitors.
PMCID:4532279
PMID: 25759017
ISSN: 1535-6108
CID: 1494912

Limited miR-17-92 overexpression drives hematologic malignancies

Danielson, Laura S; Reavie, Linsey; Coussens, Marc; Davalos, Veronica; Castillo-Martin, Mireia; Guijarro, Maria V; Coffre, Maryaline; Cordon-Cardo, Carlos; Aifantis, Iannis; Ibrahim, Sherif; Liu, Cynthia; Koralov, Sergei B; Hernando, Eva
The overexpression of microRNA cluster miR-17-92 has been implicated in development of solid tumors and hematological malignancies. The role of miR-17-92 in lymphomagenesis has been extensively investigated; however, because of the developmental defects caused by miR-17-92 dysregulation, its ability to drive tumorigenesis has remained undetermined until recently. Here we demonstrate that overexpression of miR-17-92 in a limited number of hematopoietic cells is sufficient to cause B cell malignancies. In sum, our study provides a novel and physiologically relevant model that exposes the potent ability of miR-17-92 to act as a driver of tumorigenesis.
PMCID:4376677
PMID: 25597017
ISSN: 0145-2126
CID: 1439872

FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification

Kourtis, Nikos; Moubarak, Rana S; Aranda-Orgilles, Beatriz; Lui, Kevin; Aydin, Iraz T; Trimarchi, Thomas; Darvishian, Farbod; Salvaggio, Christine; Zhong, Judy; Bhatt, Kamala; Chen, Emily I; Celebi, Julide T; Lazaris, Charalampos; Tsirigos, Aristotelis; Osman, Iman; Hernando, Eva; Aifantis, Iannis
Heat-shock factor 1 (HSF1) orchestrates the heat-shock response in eukaryotes. Although this pathway has evolved to help cells adapt in the presence of challenging conditions, it is co-opted in cancer to support malignancy. However, the mechanisms that regulate HSF1 and thus cellular stress response are poorly understood. Here we show that the ubiquitin ligase FBXW7alpha interacts with HSF1 through a conserved motif phosphorylated by GSK3beta and ERK1. FBXW7alpha ubiquitylates HSF1 and loss of FBXW7alpha results in impaired degradation of nuclear HSF1 and defective heat-shock response attenuation. FBXW7alpha is either mutated or transcriptionally downregulated in melanoma and HSF1 nuclear stabilization correlates with increased metastatic potential and disease progression. FBXW7alpha deficiency and subsequent HSF1 accumulation activates an invasion-supportive transcriptional program and enhances the metastatic potential of human melanoma cells. These findings identify a post-translational mechanism of regulation of the HSF1 transcriptional program both in the presence of exogenous stress and in cancer.
PMCID:4401662
PMID: 25720964
ISSN: 1465-7392
CID: 1474022

MODELING THE FUNCTION OF THE COHESIN COMPLEX IN HEMATOPOIETIC STEM CELL DIFFERENTIATION AND TRANSFORMATION [Meeting Abstract]

Aifantis, Iannis
ISI:000361417400012
ISSN: 1873-2399
CID: 1795102

SRSF2 mutations impair hematopoietic differentiation by altering exonic splicing enhancer preference. [Meeting Abstract]

Kim, Eunhee; Ilagan, Janine O; Lee, Stanley; Ramakrishnan, Aravind; Chung, Young Rock; Micol, Jean-Baptiste; Murphy, Michele E; Kim, Min-Kyung; Zebari, Ahmad S; Buonamici, Silvia; Smith, Peter; Deeg, HJoachim; Lobry, Camille; Aifantis, Iannis; Bradley, Robert K; Abdel-Wahab, Omar
ISI:000361386200100
ISSN: 1557-3265
CID: 1795092