Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:barsad01

Total Results:

208


Rac1 mediates STAT3 activation by autocrine IL-6

Faruqi TR; Gomez D; Bustelo XR; Bar-Sagi D; Reich NC
The activity of the small GTPase, Rac1, plays a role in various cellular processes including cytoskeletal rearrangement, gene transcription, and malignant transformation. In this report constitutively active Rac1 (Rac V12) is shown to stimulate the activation of STAT3, a member of the family of signal transducers and activators of transcription (STATs). The activity of Rac1 leads to STAT3 translocation to the nucleus coincident with STAT3-dependent gene expression. The expression of Vav (Delta1-187), a constitutively active guanine nucleotide exchange factor for the Rho GTPases, or activated forms of Ras or Rho family members, leads to STAT3-specific activation. The activation of STAT3 requires tyrosine phosphorylation at residue 705, but is not dependent on phosphorylation of Ser-727. Our studies indicate that Rac1 induces STAT3 activation through an indirect mechanism that involves the autocrine production and action of IL-6, a known mediator of STAT3 response. Rac V12 expression results in the induction of the IL-6 and IL-6 receptor genes and neutralizing antibodies directed against the IL-6 receptor block Rac1-induced STAT3 activation. Furthermore, inhibition of the nuclear factor-kappaB activation or disruption of IL-6-mediated signaling through the expression of IkappaBalpha S32AS36A and suppressor of cytokine signaling 3, respectively, blocks Rac1-induced STAT3 activation. These findings elucidate a mechanism dependent on the induction of an autocrine IL-6 activation loop through which Rac1 mediates STAT3 activation establishing a link between oncogenic GTPase activity and Janus kinase/STAT signaling
PMCID:55365
PMID: 11470914
ISSN: 0027-8424
CID: 62947

Structure-based mutagenesis reveals distinct functions for Ras switch 1 and switch 2 in Sos-catalyzed guanine nucleotide exchange

Hall BE; Yang SS; Boriack-Sjodin PA; Kuriyan J; Bar-Sagi D
Ras GTPases function as binary switches in signaling pathways controlling cell growth and differentiation. The guanine nucleotide exchange factor Sos mediates the activation of Ras in response to extracellular signals. We have previously solved the crystal structure of nucleotide-free Ras in complex with the catalytic domain of Sos (Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D., and Kuriyan, J. (1998) Nature 394, 337-343). The structure demonstrates that Sos induces conformational changes in two loop regions of Ras known as switch 1 and switch 2. In this study, we have employed site-directed mutagenesis to investigate the functional significance of the conformational changes for the catalytic function of Sos. Switch 2 of Ras is held in a very tight embrace by Sos, with almost every external side chain coordinated by Sos. Mutagenesis of contact residues at the switch 2-Sos interface shows that only a small set of side chains affect binding, with the most important contact being mediated by tyrosine 64, which is buried in a hydrophobic pocket of Sos in the Ras.Sos complex. Substitutions of Ras and Sos side chains that are inserted into the Mg(2+)- and nucleotide phosphate-binding site of switch 2 (Ras Ala(59) and Sos Leu(938) and Glu(942)) have no effect on the catalytic function of Sos. These results indicate that the interaction of Sos with switch 2 is necessary for tight binding, but is not the critical driving force for GDP displacement. The structural distortion of switch 1 induced by Sos is mediated by a small number of specific contacts between highly conserved residues on both Ras and Sos. Mutations of a subset of these residues (Ras Tyr(32) and Tyr(40)) result in an increase in the intrinsic rate of nucleotide dissociation from Ras and impair the binding of Ras to Sos. Based on this analysis, we propose that the interactions of Sos with the switch 1 and switch 2 regions of Ras have distinct functional consequences: the interaction with switch 2 mediates the anchoring of Ras to Sos, whereas the interaction with switch 1 leads to disruption of the nucleotide-binding site and GDP dissociation
PMID: 11333268
ISSN: 0021-9258
CID: 62948

Differential activation of the Rac pathway by Ha-Ras and K-Ras

Walsh AB; Bar-Sagi D
Ras proteins are key regulators of cell growth and differentiation. Mammalian cells express three closely related Ras proteins: Ha-Ras, K-Ras, and N-Ras. We have compared the abilities of the Ha-Ras and K-Ras isoforms to activate the Rac effector pathway, using three Rac-dependent readouts: induction of membrane ruffling and pinocytosis, stimulation of cell motility, and Pak binding. The total surface area of membrane ruffles induced by K-RasV12 was 2-fold greater than that induced by Ha-RasV12. Likewise, the number of K-RasV12-induced pinocytic vesicles per cell was approximately 2-fold greater than that induced by Ha-RasV12. In a wound healing assay, K-RasV12-injected cells migrated twice as fast as Ha-RasV12-injected cells. Moreover, the Pak binding activity of Rac, which is indicative of the amount of GTP-bound Rac, was higher in K-RasV12-expressing cells than Ha-RasV12-expressing cells. These results suggest that K-Ras activates Rac more efficiently than Ha-Ras. The preferential activation of Rac by K-Ras is dependent on the mode of membrane anchoring and impacts on the ability of K-Ras to regulate cell survival
PMID: 11278702
ISSN: 0021-9258
CID: 62949

A Ras by any other name

Bar-Sagi D
PMCID:86689
PMID: 11238880
ISSN: 0270-7306
CID: 62950

Ras and Rho GTPases: a family reunion

Bar-Sagi D; Hall A
PMID: 11057896
ISSN: 0092-8674
CID: 62951

Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway

Tournier C; Hess P; Yang DD; Xu J; Turner TK; Nimnual A; Bar-Sagi D; Jones SN; Flavell RA; Davis RJ
The c-Jun NH2-terminal kinase (JNK) is activated when cells are exposed to ultraviolet (UV) radiation. However, the functional consequence of JNK activation in UV-irradiated cells has not been established. It is shown here that JNK is required for UV-induced apoptosis in primary murine embryonic fibroblasts. Fibroblasts with simultaneous targeted disruptions of all the functional Jnk genes were protected against UV-stimulated apoptosis. The absence of JNK caused a defect in the mitochondrial death signaling pathway, including the failure to release cytochrome c. These data indicate that mitochondria are influenced by proapoptotic signal transduction through the JNK pathway
PMID: 10797012
ISSN: 0036-8075
CID: 62953

Induction of the cellular E2F-1 promoter by the adenovirus E4-6/7 protein

Schaley J; O'Connor RJ; Taylor LJ; Bar-Sagi D; Hearing P
The adenovirus type 5 (Ad5) E4-6/7 protein interacts directly with different members of the E2F family and mediates the cooperative and stable binding of E2F to a unique pair of binding sites in the Ad5 E2a promoter region. This induction of E2F DNA binding activity strongly correlates with increased E2a transcription when analyzed using virus infection and transient expression assays. Here we show that while different adenovirus isolates express an E4-6/7 protein that is capable of induction of E2F dimerization and stable DNA binding to the Ad5 E2a promoter region, not all of these viruses carry the inverted E2F binding site targets in their E2a promoter regions. The Ad12 and Ad40 E2a promoter regions bind E2F via a single binding site. However, these promoters bind adenovirus-induced (dimerized) E2F very weakly. The Ad3 E2a promoter region binds E2F very poorly, even via a single binding site. A possible explanation of these results is that the Ad E4-6/7 protein evolved to induce cellular gene expression. Consistent with this notion, we show that infection with different adenovirus isolates induces the binding of E2F to an inverted configuration of binding sites present in the cellular E2F-1 promoter. Transient expression of the E4-6/7 protein alone in uninfected cells is sufficient to induce transactivation of the E2F-1 promoter linked to chloramphenicol acetyltransferase or green fluorescent protein reporter genes. Further, expression of the E4-6/7 protein in the context of adenovirus infection induces E2F-1 protein accumulation. Thus, the induction of E2F binding to the E2F-1 promoter by the E4-6/7 protein observed in vitro correlates with transactivation of E2F-1 promoter activity in vivo. These results suggest that adenovirus has evolved two distinct mechanisms to induce the expression of the E2F-1 gene. The E1A proteins displace repressors of E2F activity (the Rb family members) and thus relieve E2F-1 promoter repression; the E4-6/7 protein complements this function by stably recruiting active E2F to the E2F-1 promoter to transactivate expression
PMCID:111689
PMID: 10666238
ISSN: 0022-538x
CID: 62955

Single cell assays for Rac activity

Taylor LJ; Walsh AB; Hearing P; Bar-Sagi D
PMID: 11036615
ISSN: 0076-6879
CID: 62952

Suppression of Ras-induced apoptosis by the Rac GTPase

Joneson T; Bar-Sagi D
Ras is an essential component of signal transduction pathways that control cell proliferation, differentiation, and survival. In this study we have examined the cellular responses to high-intensity Ras signaling. Expression of increasing amounts of the oncogenic form of human HRas, HRasV12, results in a dose-dependent induction of apoptosis in both primary and immortalized cells. The induction of apoptosis by HRasV12 is blocked by activated Rac and potentiated by dominant interfering Rac. The ability of Rac to suppress Ras-induced apoptosis is dependent on effector pathway(s) controlled by the insert region and is linked to the activation of NF-kappaB. The apoptotic effect of HRasV12 requires the activation of both the ERK and JNK mitogen-activated protein kinase cascade and is independent of p53. These results demonstrate a role for Rac in controlling signals that are necessary for cell survival, and suggest a mechanism by which Rac activity can confer growth advantage to cells transformed by the ras oncogene
PMCID:84438
PMID: 10454536
ISSN: 0270-7306
CID: 62957

Nucleolar Arf sequesters Mdm2 and activates p53

Weber JD; Taylor LJ; Roussel MF; Sherr CJ; Bar-Sagi D
The Ink4/Arf locus encodes two tumour-suppressor proteins, p16Ink4a and p19Arf, that govern the antiproliferative functions of the retinoblastoma and p53 proteins, respectively. Here we show that Arf binds to the product of the Mdm2 gene and sequesters it into the nucleolus, thereby preventing negative-feedback regulation of p53 by Mdm2 and leading to the activation of p53 in the nucleoplasm. Arf and Mdm2 co-localize in the nucleolus in response to activation of the oncoprotein Myc and as mouse fibroblasts undergo replicative senescence. These topological interactions of Arf and Mdm2 point towards a new mechanism for p53 activation
PMID: 10559859
ISSN: 1465-7392
CID: 62956