Searched for: in-biosketch:yes
person:chakra01
A polymorphic 3'UTR element in ATP1B1 regulates alternative polyadenylation and is associated with blood pressure
Prasad, Megana K; Bhalla, Kavita; Pan, Zhen Hua; O'Connell, Jeffrey R; Weder, Alan B; Chakravarti, Aravinda; Tian, Bin; Chang, Yen-Pei C
Although variants in many genes have previously been shown to be associated with blood pressure (BP) levels, the molecular mechanism underlying these associations are mostly unknown. We identified a multi-allelic T-rich sequence (TRS) in the 3'UTR of ATP1B1 that varies in length and sequence composition (T22-27 and T12GT 3GT6). The 3'UTR of ATP1B1 contains 2 functional polyadenylation signals and the TRS is downstream of the proximal polyadenylation site (A2). Therefore, we hypothesized that alleles of this TRS might influence ATP1B1 expression by regulating alternative polyadenylation. In vitro, the T12GT 3GT6 allele increases polyadenylation at the A2 polyadenylation site as compared to the T23 allele. Consistent with our hypothesis, the relative abundance of the A2-polyadenylated ATP1B1 mRNA was higher in human kidneys with at least one copy of the T12GT 3GT6 allele than in those lacking this allele. The T12GT 3GT6 allele is also associated with higher systolic BP (beta = 3.3 mmHg, p = 0.014) and diastolic BP (beta = 2.4 mmHg, p = 0.003) in a European-American population. Therefore, we have identified a novel multi-allelic TRS in the 3'UTR of ATP1B1 that is associated with higher BP and may mediate its effect by regulating the polyadenylation of the ATP1B1 mRNA.
PMCID:3788127
PMID: 24098465
ISSN: 1932-6203
CID: 2746992
Genome wide association analysis of a founder population identified TAF3 as a gene for MCHC in humans
Pistis, Giorgio; Okonkwo, Shawntel U; Traglia, Michela; Sala, Cinzia; Shin, So-Youn; Masciullo, Corrado; Buetti, Iwan; Massacane, Roberto; Mangino, Massimo; Thein, Swee-Lay; Spector, Timothy D; Ganesh, Santhi; Pirastu, Nicola; Gasparini, Paolo; Soranzo, Nicole; Camaschella, Clara; Hart, Daniel; Green, Michael R; Toniolo, Daniela; [Chakravarti, Aravinda]
The red blood cell related traits are highly heritable but their genetics are poorly defined. Only 5-10% of the total observed variance is explained by the genetic loci found to date, suggesting that additional loci should be searched using approaches alternative to large meta analysis. GWAS (Genome Wide Association Study) for red blood cell traits in a founder population cohort from Northern Italy identified a new locus for mean corpuscular hemoglobin concentration (MCHC) in the TAF3 gene. The association was replicated in two cohorts (rs1887582, P = 4.25E-09). TAF3 encodes a transcription cofactor that participates in core promoter recognition complex, and is involved in zebrafish and mouse erythropoiesis. We show here that TAF3 is required for transcription of the SPTA1 gene, encoding alpha spectrin, one of the proteins that link the plasma membrane to the actin cytoskeleton. Mutations in SPTA1 are responsible for hereditary spherocytosis, a monogenic disorder of MCHC, as well as for the normal MCHC level. Based on our results, we propose that TAF3 is required for normal erythropoiesis in human and that it might have a role in controlling the ratio between hemoglobin (Hb) and cell volume and in the dynamics of RBC maturation in healthy individuals. Finally, TAF3 represents a potential candidate or a modifier gene for disorders of red cell membrane.
PMCID:3729833
PMID: 23935956
ISSN: 1932-6203
CID: 3988652
Chromosome 21 scan in Down syndrome reveals DSCAM as a predisposing locus in Hirschsprung disease
Jannot, Anne-Sophie; Pelet, Anna; Henrion-Caude, Alexandra; Chaoui, Asma; Masse-Morel, Marine; Arnold, Stacey; Sanlaville, Damien; Ceccherini, Isabella; Borrego, Salud; Hofstra, Robert M W; Munnich, Arnold; Bondurand, Nadege; Chakravarti, Aravinda; Clerget-Darpoux, Francoise; Amiel, Jeanne; Lyonnet, Stanislas
Hirschsprung disease (HSCR) genetics is a paradigm for the study and understanding of multigenic disorders. Association between Down syndrome and HSCR suggests that genetic factors that predispose to HSCR map to chromosome 21. To identify these additional factors, we performed a dose-dependent association study on chromosome 21 in Down syndrome patients with HSCR. Assessing 10,895 SNPs in 26 Caucasian cases and their parents led to identify two associated SNPs (rs2837770 and rs8134673) at chromosome-wide level. Those SNPs, which were located in intron 3 of the DSCAM gene within a 19 kb-linkage disequilibrium block region were in complete association and are consistent with DSCAM expression during enteric nervous system development. We replicated the association of HSCR with this region in an independent sample of 220 non-syndromic HSCR Caucasian patients and their parents. At last, we provide the functional rationale to the involvement of DSCAM by network analysis and assessment of SOX10 regulation. Our results reveal the involvement of DSCAM as a HSCR susceptibility locus, both in Down syndrome and HSCR isolated cases. This study further ascertains the chromosome-scan dose-dependent methodology used herein as a mean to map the genetic bases of other sub-phenotypes both in Down syndrome and other aneuploidies.
PMCID:3646051
PMID: 23671607
ISSN: 1932-6203
CID: 2747052
An integrated map of genetic variation from 1,092 human genomes
Abecasis, Goncalo R; Auton, Adam; Brooks, Lisa D; DePristo, Mark A; Durbin, Richard M; Handsaker, Robert E; Kang, Hyun Min; Marth, Gabor T; McVean, Gil A; [Chakravarti, Aravinda]
By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations.
PMID: 23128226
ISSN: 1476-4687
CID: 3988632
Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM
Amin, N; Byrne, E; Johnson, J; Chenevix-Trench, G; Walter, S; Nolte, I M; Vink, J M; Rawal, R; Mangino, M; Teumer, A; Keers, J C; Verwoert, G; Baumeister, S; Biffar, R; Petersmann, A; Dahmen, N; Doering, A; Isaacs, A; Broer, L; Wray, N R; Montgomery, G W; Levy, D; Psaty, B M; Gudnason, V; Chakravarti, A; Sulem, P; Gudbjartsson, D F; Kiemeney, L A; Thorsteinsdottir, U; Stefansson, K; van Rooij, F J A; Aulchenko, Y S; Hottenga, J J; Rivadeneira, F R; Hofman, A; Uitterlinden, A G; Hammond, C J; Shin, S-Y; Ikram, A; Witteman, J C M; Janssens, A C J W; Snieder, H; Tiemeier, H; Wolfenbuttel, B H R; Oostra, B A; Heath, A C; Wichmann, E; Spector, T D; Grabe, H J; Boomsma, D I; Martin, N G; van Duijn, C M
Coffee consumption is a model for addictive behavior. We performed a meta-analysis of genome-wide association studies (GWASs) on coffee intake from 8 Caucasian cohorts (N=18 176) and sought replication of our top findings in a further 7929 individuals. We also performed a gene expression analysis treating different cell lines with caffeine. Genome-wide significant association was observed for two single-nucleotide polymorphisms (SNPs) in the 15q24 region. The two SNPs rs2470893 and rs2472297 (P-values=1.6 × 10(-11) and 2.7 × 10(-11)), which were also in strong linkage disequilibrium (r(2)=0.7) with each other, lie in the 23-kb long commonly shared 5' flanking region between CYP1A1 and CYP1A2 genes. CYP1A1 was found to be downregulated in lymphoblastoid cell lines treated with caffeine. CYP1A1 is known to metabolize polycyclic aromatic hydrocarbons, which are important constituents of coffee, whereas CYP1A2 is involved in the primary metabolism of caffeine. Significant evidence of association was also detected at rs382140 (P-value=3.9 × 10(-09)) near NRCAM-a gene implicated in vulnerability to addiction, and at another independent hit rs6495122 (P-value=7.1 × 10(-09))-an SNP associated with blood pressure-in the 15q24 region near the gene ULK3, in the meta-analysis of discovery and replication cohorts. Our results from GWASs and expression analysis also strongly implicate CAB39L in coffee drinking. Pathway analysis of differentially expressed genes revealed significantly enriched ubiquitin proteasome (P-value=2.2 × 10(-05)) and Parkinson's disease pathways (P-value=3.6 × 10(-05)).
PMCID:3482684
PMID: 21876539
ISSN: 1476-5578
CID: 3979612
Male and female differential reproductive rate could explain parental transmission asymmetry of mutation origin in Hirschsprung disease
Jannot, Anne-Sophie; Amiel, Jeanne; Pelet, Anna; Lantieri, Francesca; Fernandez, Raquel M; Verheij, Joke B G M; Garcia-Barcelo, Merce; Arnold, Stacey; Ceccherini, Isabella; Borrego, Salud; Hofstra, Robert M W; Tam, Paul K H; Munnich, Arnold; Chakravarti, Aravinda; Clerget-Darpoux, Francoise; Lyonnet, Stanislas
Hirschsprung disease (HSCR, aganglionic megacolon) is a complex and heterogeneous disease with an incidence of 1 in 5000 live births. Despite the multifactorial determination of HSCR in the vast majority of cases, there is a monogenic subgroup for which private rare RET coding sequence mutations with high penetrance are found (45% of HSCR familial cases). An asymmetrical parental origin is observed for RET coding sequence mutations with a higher maternal inheritance. A parent-of-origin effect is usually assumed. Here we show that a differential reproductive rate for males and females also leads to an asymmetrical parental origin, which was never considered as a possible explanation till now. In the case of HSCR, we show a positive association between penetrance of the mutation and parental transmission asymmetry: no parental transmission asymmetry is observed in sporadic RET CDS mutation carrier cases for which penetrance of the mutation is low, whereas a parental transmission asymmetry is observed in affected sib-pairs for which penetrance of the mutation is higher. This allows us to conclude that the explanation for this parental asymmetry is that more severe mutations have resulted in a differential reproductive rate between male and female carriers.
PMCID:3421120
PMID: 22395866
ISSN: 1476-5438
CID: 2747142
A Polymorphic T-Rich Element in ATP1B1 Is Associated with Blood Pressure and Regulates Alternative Polyadenylation [Meeting Abstract]
Prasad, Megana; Bhalla, Kavita; Pan, Zhenhua; O'Connell, Jeffrey R; Ji, Zhe; Weder, Alan; Chakravarti, Aravinda; Tian, Bin; Chang, Yen-Pei C
ISI:000312506400144
ISSN: 0009-7330
CID: 2748302
Meta-analysis identifies six new susceptibility loci for atrial fibrillation
Ellinor, Patrick T; Lunetta, Kathryn L; Albert, Christine M; Glazer, Nicole L; Ritchie, Marylyn D; Smith, Albert V; Arking, Dan E; Muller-Nurasyid, Martina; Krijthe, Bouwe P; Lubitz, Steven A; Bis, Joshua C; Chung, Mina K; Dorr, Marcus; Ozaki, Kouichi; Roberts, Jason D; Smith, J Gustav; Pfeufer, Arne; Sinner, Moritz F; Lohman, Kurt; Ding, Jingzhong; Smith, Nicholas L; Smith, Jonathan D; Rienstra, Michiel; Rice, Kenneth M; Van Wagoner, David R; Magnani, Jared W; Wakili, Reza; Clauss, Sebastian; Rotter, Jerome I; Steinbeck, Gerhard; Launer, Lenore J; Davies, Robert W; Borkovich, Matthew; Harris, Tamara B; Lin, Honghuang; Volker, Uwe; Volzke, Henry; Milan, David J; Hofman, Albert; Boerwinkle, Eric; Chen, Lin Y; Soliman, Elsayed Z; Voight, Benjamin F; Li, Guo; Chakravarti, Aravinda; Kubo, Michiaki; Tedrow, Usha B; Rose, Lynda M; Ridker, Paul M; Conen, David; Tsunoda, Tatsuhiko; Furukawa, Tetsushi; Sotoodehnia, Nona; Xu, Siyan; Kamatani, Naoyuki; Levy, Daniel; Nakamura, Yusuke; Parvez, Babar; Mahida, Saagar; Furie, Karen L; Rosand, Jonathan; Muhammad, Raafia; Psaty, Bruce M; Meitinger, Thomas; Perz, Siegfried; Wichmann, H-Erich; Witteman, Jacqueline C M; Kao, W H Linda; Kathiresan, Sekar; Roden, Dan M; Uitterlinden, Andre G; Rivadeneira, Fernando; McKnight, Barbara; Sjogren, Marketa; Newman, Anne B; Liu, Yongmei; Gollob, Michael H; Melander, Olle; Tanaka, Toshihiro; Stricker, Bruno H Ch; Felix, Stephan B; Alonso, Alvaro; Darbar, Dawood; Barnard, John; Chasman, Daniel I; Heckbert, Susan R; Benjamin, Emelia J; Gudnason, Vilmundur; Kaab, Stefan
Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death. We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 10,030 subjects without atrial fibrillation (P < 5 x 10(-8)). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules.
PMCID:3366038
PMID: 22544366
ISSN: 1546-1718
CID: 2747122
The 1000 Genomes Project: data management and community access
Clarke, Laura; Zheng-Bradley, Xiangqun; Smith, Richard; Kulesha, Eugene; Xiao, Chunlin; Toneva, Iliana; Vaughan, Brendan; Preuss, Don; Leinonen, Rasko; Shumway, Martin; Sherry, Stephen; Flicek, Paul; [Chakravarti, Aravinda]
The 1000 Genomes Project was launched as one of the largest distributed data collection and analysis projects ever undertaken in biology. In addition to the primary scientific goals of creating both a deep catalog of human genetic variation and extensive methods to accurately discover and characterize variation using new sequencing technologies, the project makes all of its data publicly available. Members of the project data coordination center have developed and deployed several tools to enable widespread data access.
PMCID:3340611
PMID: 22543379
ISSN: 1548-7105
CID: 3988622
2011 introduction to Curt Stern Award [Historical Article]
Chakravarti, Aravinda
PMCID:3309201
PMID: 22405085
ISSN: 1537-6605
CID: 2747132