Searched for: in-biosketch:yes
person:garabm01
Role for Hsp90-associated cochaperone p23 in estrogen receptor signal transduction
Knoblauch R; Garabedian MJ
The mechanism of signal transduction by the estrogen receptor (ER) is complex and not fully understood. In addition to the ER, a number of accessory proteins are apparently required to efficiently transduce the steroid hormone signal. In the absence of estradiol, the ER, like other steroid receptors, is complexed with Hsp90 and other molecular chaperone components, including an immunophilin, and p23. This Hsp90-based chaperone complex is thought to repress the ER's transcriptional regulatory activities while maintaining the receptor in a conformation that is competent for high-affinity steroid binding. However, a role for p23 in ER signal transduction has not been demonstrated. Using a mutant ER (G400V) with decreased hormone binding capacity as a substrate in a dosage suppression screen in yeast cells (Saccharomyces cerevisiae), we identified the yeast homologue of the human p23 protein (yhp23) as a positive regulator of ER function. Overexpression of yhp23 in yeast cells increases ER transcriptional activation by increasing estradiol binding in vivo. Importantly, the magnitude of the effect of yhp23 on ER transcriptional activation is inversely proportional to the concentration of both ER and estradiol in the cell. Under conditions of high ER expression, ER transcriptional activity is largely independent of yhp23, whereas at low levels of ER expression, ER transcriptional activation is primarily dependent on yhp23. The same relationship holds for estradiol levels. We further demonstrate that yhp23 colocalizes with the ER in vivo. Using a yhp23-green fluorescent protein fusion protein, we observed a redistribution of yhp23 from the cytoplasm to the nucleus upon coexpression with ER. This nuclear localization of yhp23 was reversed by the addition of estradiol, a finding consistent with yhp23's proposed role as part of the aporeceptor complex. Expression of human p23 in yeast partially complements the loss of yhp23 function with respect to ER signaling. Finally, ectopic expression of human p23 in MCF-7 breast cancer cells increases both hormone-dependent and hormone-independent transcriptional activation by the ER. Together, these results strongly suggest that p23 plays an important role in ER signal transduction
PMCID:84199
PMID: 10207098
ISSN: 0270-7306
CID: 12024
Phosphorylation and inhibition of rat glucocorticoid receptor transcriptional activation by glycogen synthase kinase-3 (GSK-3). Species-specific differences between human and rat glucocorticoid receptor signaling as revealed through GSK-3 phosphorylation
Rogatsky I; Waase CL; Garabedian MJ
Transcriptional activation by the glucocorticoid receptor (GR) is regulated by both glucocorticoid binding and phosphorylation. The rat GR N-terminal transcriptional regulatory domain contains four major phosphorylation sites: threonine 171 (Thr171), serine 224 (Ser224), serine 232 (Ser232), and serine 246 (Ser246). We have previously demonstrated that Ser224 and Ser232 are phosphorylated by cyclin-dependent kinases, while Ser246 is phosphorylated by the c-Jun N-terminal kinase. We report here that the remaining GR phosphorylation site, Thr171, is a target for glycogen synthase kinase-3 (GSK-3) in vitro and in cultured mammalian cells. Increasing GSK-3 activity through its overexpression in cultured cells inhibits GR transcriptional enhancement, an effect dependent upon Thr171. Correspondingly, overexpression of a constitutively active form of the GSK-3 inhibitor, protein kinase B/Akt, increases GR transcriptional enhancement. Overexpression of GSK-3 had no effect on GR-mediated transcriptional repression of AP1-dependent gene expression. Importantly, transcriptional activation by the human GR (hGR), which contains an alanine (Ala150) at the position equivalent to Thr171 in rat GR, is not affected by GSK-3 overexpression. Introduction of a threonine residue at this position (A150T) establishes GSK-3-mediated inhibition of hGR transcriptional activation. These findings demonstrate species-specific differences in GR signaling, as revealed through GSK-3 phosphorylation, which suggests that GR function in rodents may not fully recapitulate receptor action in humans and that hGR is capable of adopting the GSK-3 signaling pathway through a somatic mutation
PMID: 9603939
ISSN: 0021-9258
CID: 8300
Antagonism of glucocorticoid receptor transcriptional activation by the c-Jun N-terminal kinase
Rogatsky I; Logan SK; Garabedian MJ
The mitogen-activated protein kinases ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), and p38 phosphorylate and activate transcription factors that promote proliferative and inflammatory responses, whereas glucocorticoid receptor (GR) activation inhibits cell growth and inflammation. We demonstrate that JNK and ERK but not p38 phosphorylate GR in vitro primarily at Ser-246. Selective activation of either ERK or JNK in vivo inhibits GR-mediated transcriptional activation, which depends on receptor phosphorylation at Ser-246 by JNK but not ERK. Thus, JNK inhibits GR transcriptional activation by direct receptor phosphorylation, whereas ERK does so indirectly. We propose that phosphorylation of GR by JNK or of a GR cofactor by ERK provides mechanisms to ensure the rapid inhibition of GR-dependent gene expression when it conflicts with mitogenic or proinflammatory signals
PMCID:19245
PMID: 9482836
ISSN: 0027-8424
CID: 7764
Superactivation of expanded CAG repeat mutant androgen receptor by overexpression of TAF130 [Meeting Abstract]
Taneja, SS; Kern, A; Tanese, N; Garabedian, MJ
ISI:000073081500036
ISSN: 0022-5347
CID: 104584
Mechanism of glucocorticoid-dependent inhibition of estradiol-induced proliferation of MCF7 breast cancer cells [Meeting Abstract]
Labat, M; Rogatsky, I; Trowbridge, J; Garabedian, M
ISI:A1997YF09600148
ISSN: 1059-1524
CID: 53157
Regulation of estrogen receptor transcriptional enhancement by the cyclin A/Cdk2 complex
Trowbridge JM; Rogatsky I; Garabedian MJ
We have found that ectopic expression of cyclin A increases hormone-dependent and hormone-independent transcriptional activation by the estrogen receptor in vivo in a number of cell lines, including HeLa cells, U-2 OS osteosarcoma cells and Hs 578Bst breast epithelial cells. This effect can be further enhanced in HeLa cells by the concurrent expression of the cyclin-dependent kinase activator, cyclin H, and cdk7, and abolished by expression of the cdk inhibitor, p27(KIP1), or by the expression of a dominant negative catalytically inactive cdk2 mutant. ER is phosphorylated between amino acids 82 and 121 in vitro by the cyclin A/cdk2 complex and incorporation of phosphate into ER is stimulated by ectopic expression of cyclin A in vivo. Together, these results strongly suggest a direct role for the cyclin A/cdk2 complex in phosphorylating ER and regulating its transcriptional activity
PMCID:23327
PMID: 9294175
ISSN: 0027-8424
CID: 57005
Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor
Krstic MD; Rogatsky I; Yamamoto KR; Garabedian MJ
Cyclin-dependent kinase (CDK) and mitogen-activated protein kinase (MAPK) phosphorylate the rat glucocorticoid receptor in vitro at distinct sites that together correspond to the major phosphorylated receptor residues observed in vivo; MAPK phosphorylates receptor residues threonine 171 and serine 246, whereas multiple CDK complexes modify serines 224 and 232. Mutations in these kinases have opposite effects on receptor transcriptional activity in vivo. Receptor-dependent transcriptional enhancement is reduced in yeast strains deficient in the catalytic (p34CDC28) or certain regulatory (cyclin) subunits of CDK complexes and is increased in a strain devoid of the mammalian MAPK homologs FUS3 and KSS1. These findings indicate that the glucocorticoid receptor is a target for multiple kinases in vivo, which either positively or negatively regulate receptor transcriptional enhancement. The control of receptor transcriptional activity via phosphorylation provides an increased array of regulatory inputs that, in addition to steroid hormones, can influence receptor function
PMCID:232247
PMID: 9199329
ISSN: 0270-7306
CID: 7190
Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms
Rogatsky I; Trowbridge JM; Garabedian MJ
Glucocorticoids inhibit proliferation of many cell types, but the events leading from the activated glucocorticoid receptor (GR) to growth arrest are not understood. Ectopic expression and activation of GR in human osteosarcoma cell lines U2OS and SAOS2, which lack endogenous receptors, result in a G1 cell cycle arrest. GR activation in U2OS cells represses expression of the cyclin-dependent kinases (CDKs) CDK4 and CDK6 as well as their regulatory partner, cyclin D3, leading to hypophosphorylation of the retinoblastoma protein (Rb). We also demonstrate a ligand-dependent reduction in the expression of E2F-1 and c-Myc, transcription factors involved in the G1-to-S-phase transition. Mitogen-activated protein kinase, CDK2, cyclin E, and the CDK inhibitors (CDIs) p27 and p21 are unaffected by receptor activation in U2OS cells. The receptor's N-terminal transcriptional activation domain is not required for growth arrest in U2OS cells. In Rb-deficient SAOS2 cells, however, the expression of p27 and p21 is induced upon receptor activation. Remarkably, in SAOS2 cells that express a GR deletion derivative lacking the N-terminal transcriptional activation domain, induction of CDI expression is abolished and the cells fail to undergo ligand-dependent cell cycle arrest. Similarly, murine S49 lymphoma cells, which, like SAOS2 cells, lack Rb, require the N-terminal activation domain for growth arrest and induce CDI expression upon GR activation. These cell-type-specific differences in receptor domains and cellular targets linking GR activation to cell cycle machinery suggest two distinct regulatory mechanisms of GR-mediated cell cycle arrest: one involving transcriptional repression of G1 cyclins and CDKs and the other involving enhanced transcription of CDIs by the activated receptor
PMCID:232171
PMID: 9154817
ISSN: 0270-7306
CID: 7250
GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors
Hong, H; Kohli, K; Garabedian, M J; Stallcup, M R
After binding to enhancer elements, transcription factors require transcriptional coactivator proteins to mediate their stimulation of transcription initiation. A search for possible coactivators for steroid hormone receptors resulted in identification of glucocorticoid receptor interacting protein 1 (GRIP1). The complete coding sequence for GRIP1, isolated from a mouse brain cDNA library, contains an open reading frame of 1,462 codons. GRIP1 is the probable ortholog of the subsequently identified human protein transcription intermediary factor 2 (TIF2) and is also partially homologous to steroid receptor coactivator 1 (SRC-1). The full-length GRIP1 interacted with the hormone binding domains (HBDs) of all five steroid receptors in a hormone-dependent manner and also with HBDs of class II nuclear receptors, including thyroid receptor alpha, vitamin D receptor, retinoic acid receptor alpha, and retinoid X receptor alpha. In contrast to agonists, glucocorticoid antagonists did not promote interaction between the glucocorticoid receptor and GRIP1. In yeast cells, GRIP1 dramatically enhanced the transcriptional activation function of proteins containing the HBDs of any of the above-named receptors fused to the GAL4 DNA binding domain and thus served as a transcriptional coactivator for them. This finding contrasts with previous reports of TIF2 and SRC-1, which in mammalian cells enhanced the transactivation activities of only a subset of the steroid and nuclear receptors that they physically interacted with. GRIP1 also enhanced the hormone-dependent transactivation activity of intact glucocorticoid receptor, estrogen receptor, and mineralocorticoid receptor. Experiments with glucocorticoid receptor truncation and point mutants indicated that GRIP1 interacted with and enhanced the activity of the C-terminal AF-2 but not the N-terminal AF-1 transactivation domain of the glucocorticoid receptor. These results demonstrate directly that AF-1 and AF-2 domains accomplish their transactivation activities through different mechanisms: AF-2 requires GRIP1 as a coactivator, but AF-1 does not
PMCID:232124
PMID: 9111344
ISSN: 0270-7306
CID: 120743
Modular structure of glucocorticoid receptor domains is not equivalent to functional independence. Stability and activity of the steroid binding domain are controlled by sequences in separate domains
Xu, M; Chakraborti, P K; Garabedian, M J; Yamamoto, K R; Simons, S S
A long-standing conundrum of glucocorticoid receptors has been why the steroid binding domain is active in hybrid proteins but not in isolation. For this reason, the precise boundaries of the steroid binding domain have not been defined. These questions have now been systematically examined with a variety of receptor deletion constructs. Plasmids encoding amino acids 537-673 and 537-795 of the rat receptor did not yield stable proteins, while the fusion of receptor or non-receptor sequences upstream of 537-673 afforded stable proteins that did not bind steroid. Wild type steroid binding affinity could be obtained, however, when proteins such as beta-galactosidase or dihydrofolate reductase were fused upstream of receptor amino acids 537-795. Studies of a series of dhfr/receptor constructs with deletions at the amino- and carboxyl-terminal ends of the receptor sequence localized the boundaries of the steroid binding domain to 550-795. The absence of steroid binding upon deletion of sequences in the carboxyl-terminal half of this domain was consistent with improperly folded receptor sequences. This conclusion was supported by analyses of the proteolysis and thermal stability of the mutant receptors. Thus, three independent regions appear to be required for the generation of the steroid binding form of receptors: 1) a protein sequence upstream of the steroid binding domain, which conveys stability to the steroid binding domain, 2) sequences of the carboxyl-terminal amino acids (674-795), which are required for the correct folding of the steroid binding domain, and 3) amino-terminal sequences (550-673), which may be sufficient for steroid binding after the entire steroid binding domain is properly folded. These results establish that the steroid binding domain of glucocorticoid receptors is not independently functional and illustrate the importance of both protein stability and protein folding when constructing mutant proteins
PMID: 8702925
ISSN: 0021-9258
CID: 120744