Searched for: in-biosketch:yes
person:littmd01
Myd88 is required for an antibody response to retroviral infection
Browne, Edward P; Littman, Dan R
Although retroviruses have been extensively studied for many years, basic questions about how retroviral infections are detected by the immune system and which innate pathways are required for the generation of immune responses remain unanswered. Defining these pathways and how they contribute to the anti-retroviral immune responses would assist in the development of more effective vaccines for retroviral pathogens such as HIV. We have investigated the roles played by CD11c(+) dendritic cells (DCs) and by Toll-like receptor (TLR) signaling pathways in the generation of an anti-retroviral immune response against a mouse retroviral pathogen, Friend murine leukemia virus (F-MLV). Specific deletion of DCs during F-MLV infection caused a significant increase in viral titers at 14 days post-infection, indicating the importance of DCs in immune control of the infection. Similarly, Myd88 knockout mice failed to control F-MLV, and sustained high viral titers (10(7) foci/spleen) for several months after infection. Strikingly, both DC-depleted mice and Myd88 knockout mice exhibited only a partial reduction of CD8(+) T cell responses, while the IgG antibody response to F-MLV was completely lost. Furthermore, passive transfer of immune serum from wild-type mice to Myd88 knockout mice rescued control of F-MLV. These results identify TLR signaling and CD11c(+) DCs as playing critical roles in the humoral response to retroviruses
PMCID:2633609
PMID: 19214214
ISSN: 1553-7374
CID: 95887
Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22
Takatori, Hiroaki; Kanno, Yuka; Watford, Wendy T; Tato, Cristina M; Weiss, Greta; Ivanov, Ivaylo I; Littman, Dan R; O'Shea, John J
The interleukin (IL) 17 family of cytokines has emerged to be critical for host defense as well as the pathogenesis of autoimmune and autoinflammatory disorders, and serves to link adaptive and innate responses. Recent studies have identified a new subset of T cells that selectively produce IL-17 (Th17 cells; Bettelli, E., T. Korn, and V.K. Kuchroo. 2007. Curr. Opin. Immunol. 19:652-657; Kolls, J.K., and A. Linden. 2004. Immunity. 21:467-476), but the regulation of IL-17 production by innate immune cells is less well understood. We report that in vitro stimulation with IL-23 induced IL-17 production by recombination activating gene (Rag) 2(-/-) splenocytes but not Rag2(-/-) common gamma chain(-/-) splenocytes. We found that a major source of IL-17 was CD4(+)CD3(-)NK1.1(-)CD11b(-)Gr1(-)CD11c(-)B220(-) cells, a phenotype that corresponds to lymphoid tissue inducer-like cells (LTi-like cells), which constitutively expressed the IL-23 receptor, aryl hydrocarbon receptor, and CCR6. In vivo challenge with the yeast cell wall product zymosan rapidly induced IL-17 production in these cells. Genetic deletion of signal transducer and activator of transcription 3 reduced but did not abrogate IL-17 production in LTi-like cells. Thus, it appears that splenic LTi-like cells are a rapid source of IL-17 and IL-22, which might contribute to dynamic organization of secondary lymphoid organ structure or host defense
PMCID:2626689
PMID: 19114665
ISSN: 1540-9538
CID: 95890
Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo
Michel, Nico; Goffinet, Christine; Ganter, Kerstin; Allespach, Ina; Kewalramani, Vineet N; Saifuddin, Mohammed; Littman, Dan R; Greene, Warner C; Goldsmith, Mark A; Keppler, Oliver T
BACKGROUND: Cells derived from native rodents have limits at distinct steps of HIV replication. Rat primary CD4 T-cells, but not macrophages, display a profound transcriptional deficit that is ameliorated by transient trans-complementation with the human Tat-interacting protein Cyclin T1 (hCycT1). RESULTS: Here, we generated transgenic rats that selectively express hCycT1 in CD4 T-cells and macrophages. hCycT1 expression in rat T-cells boosted early HIV gene expression to levels approaching those in infected primary human T-cells. hCycT1 expression was necessary, but not sufficient, to enhance HIV transcription in T-cells from individual transgenic animals, indicating that endogenous cellular factors are critical co-regulators of HIV gene expression in rats. T-cells from hCD4/hCCR5/hCycT1-transgenic rats did not support productive infection of prototypic wild-type R5 HIV-1 strains ex vivo, suggesting one or more significant limitation in the late phase of the replication cycle in this primary rodent cell type. Remarkably, we identify a replication-competent HIV-1 GFP reporter strain (R7/3 YU-2 Env) that displays characteristics of a spreading, primarily cell-to-cell-mediated infection in primary T-cells from hCD4/hCCR5-transgenic rats. Moreover, the replication of this recombinant HIV-1 strain was significantly enhanced by hCycT1 transgenesis. The viral determinants of this so far unique replicative ability are currently unknown. CONCLUSION: Thus, hCycT1 expression is beneficial to de novo HIV infection in a transgenic rat model, but additional genetic manipulations of the host or virus are required to achieve full permissivity
PMCID:2631513
PMID: 19144136
ISSN: 1742-4690
CID: 95889
RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F
Leppkes, Moritz; Becker, Christoph; Ivanov, Ivaylo I; Hirth, Sebastian; Wirtz, Stefan; Neufert, Clemens; Pouly, Sandrine; Murphy, Andrew J; Valenzuela, David M; Yancopoulos, George D; Becher, Burkhard; Littman, Dan R; Neurath, Markus F
BACKGROUND AND AIMS: IL-17-producing CD4(+) T-helper cells (Th17) contribute to chronic autoimmune inflammation in the brain, and levels of Th17-derived cytokines increase in patients with colitis, suggesting a role in pathogenesis. We analyzed the roles of Th17 cells and the transcription factor retinoic acid receptor-related organ receptor (ROR)gamma, which regulates Th17 differentiation, in chronic intestinal inflammation. METHODS: Using an adoptive transfer model of colitis, we compared the colitogenic potential of wild-type, interleukin-17A (IL-17A)-, IL-17F-, IL-22-, and RORgamma-deficient CD4(+)CD25(-) T cells in RAG1-null mice. RESULTS: Adoptive transfer of IL-17A-, IL-17F-, or IL-22-deficient T lymphocytes into RAG1-null mice caused severe colitis that was indistinguishable from that caused by wild-type cells. In contrast, transfer of RORgamma-null T cells failed to increase mucosal IL-17 cytokine levels and did not induce colitis. Treatment with IL-17A was able to restore colitis after transfer of RORgamma-null T cells, indicating a crucial role for Th17 cells in pathogenesis. Treatment of RAG1 mice that received IL-17F-null (but not wild-type) T cells with a neutralizing anti-IL-17A antibody significantly suppressed disease, indicating redundant biological effects of IL-17A and IL-17F. CONCLUSIONS: We have identified a crucial role of RORgamma-expressing Th17 cells in chronic intestinal inflammation. RORgamma controls IL-17A and IL-17F production, and these cytokines have a redundant but highly pathogenic role in gut inflammation. Reagents that target RORgamma or a combination of anti-IL-17A and anti-IL-17F might be developed as therapeutics for chronic colitis
PMID: 18992745
ISSN: 1528-0012
CID: 95893
Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin
Luci, Carmelo; Reynders, Ana; Ivanov, Ivaylo I; Cognet, Celine; Chiche, Laurent; Chasson, Lionel; Hardwigsen, Jean; Anguiano, Esperanza; Banchereau, Jacques; Chaussabel, Damien; Dalod, Marc; Littman, Dan R; Vivier, Eric; Tomasello, Elena
NKp46+CD3- natural killer lymphocytes isolated from blood, lymphoid organs, lung, liver and uterus can produce granule-dependent cytotoxicity and interferon-gamma. Here we identify in dermis, gut lamina propria and cryptopatches distinct populations of NKp46+CD3- cells with a diminished capacity to degranulate and produce interferon-gamma. In the gut, expression of the transcription factor RORgammat, which is involved in the development of lymphoid tissue-inducer cells, defined a previously unknown subset of NKp46+CD3- lymphocytes. Unlike RORgammat- lamina propria and dermis natural killer cells, gut RORgammat+NKp46+ cells produced interleukin 22. Our data show that lymphoid tissue-inducer cells and natural killer cells shared unanticipated similarities and emphasize the heterogeneity of NKp46+CD3- cells in innate immunity, lymphoid organization and local tissue repair
PMID: 19029904
ISSN: 1529-2916
CID: 95892
Regulated movement of CD4 in and out of the immunological synapse
Kao, Henry; Lin, Joseph; Littman, Dan R; Shaw, Andrey S; Allen, Paul M
The mechanism underlying the transient accumulation of CD4 at the immunological synapse (IS) and its significance for T cell activation are not understood. To investigate these issues, we mutated a serine phosphorylation site (S408) in the cytoplasmic tail of murine CD4. Preventing phosphorylation of S408 did not block CD4 recruitment to the IS; rather, it blocked the ability of CD4 to leave the IS. Surprisingly, enhanced and prolonged CD4 accumulation at the supramolecular activation cluster in the contact area had no functional consequence for T cell activation, cytokine production, or proliferation. Protein kinase C theta (PKCtheta)-deficient T cells also displayed enhanced and prolonged accumulation of wild-type CD4 at the IS, indicating that theta is the critical PKC isoform involved in CD4 movement. These findings suggest a model wherein recruitment of CD4 to the IS allows its phosphorylation by PKCtheta and subsequent removal from the IS. Thus, an important role for PKCtheta in T cell activation involves its recruitment to the IS, where it phosphorylates specific substrates that help to maintain the dynamism of protein turnover at the IS
PMCID:2857686
PMID: 19050241
ISSN: 1550-6606
CID: 95891
NK cell-activating receptors require PKC-theta for sustained signaling, transcriptional activation, and IFN-gamma secretion
Tassi, Ilaria; Cella, Marina; Presti, Rachel; Colucci, Angela; Gilfillan, Susan; Littman, Dan R; Colonna, Marco
Natural killer (NK) cell sense virally infected cells and tumor cells through multiple cell surface receptors. Many NK cell-activating receptors signal through immunoreceptor tyrosine-based activation motif (ITAM)-containing adapters, which trigger both cytotoxicy and secretion of interferon-gamma (IFN-gamma). Within the ITAM pathway, distinct signaling intermediates are variably involved in cytotoxicity and/or IFN-gamma secretion. In this study, we have evaluated the role of protein kinase C- (PKC-) in NK-cell secretion of lytic mediators and IFN-gamma. We found that engagement of NK-cell receptors that signal through ITAMs results in prompt activation of PKC-. Analyses of NK cells from PKC--deficient mice indicated that PKC- is absolutely required for ITAM-mediated IFN-gamma secretion, whereas it has no marked influence on the release of cytolytic mediators. Moreover, we found that PKC- deficiency preferentially impairs sustained extracellular-regulated kinase signaling as well as activation of c-Jun N-terminal kinase and the transcription factors AP-1 and NFAT but does not affect activation of NF-kappaB. These results indicate that NK cell-activating receptors require PKC- to generate sustained intracellular signals that reach the nucleus and promote transcriptional activation, ultimately inducing IFN-gamma production
PMCID:2581989
PMID: 18784374
ISSN: 1528-0020
CID: 95894
Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
Ivanov, Ivaylo I; Frutos, Rosa de Llanos; Manel, Nicolas; Yoshinaga, Keiji; Rifkin, Daniel B; Sartor, R Balfour; Finlay, B Brett; Littman, Dan R
The requirements for in vivo steady state differentiation of IL-17-producing T-helper (Th17) cells, which are potent inflammation effectors, remain obscure. We report that Th17 cell differentiation in the lamina propria (LP) of the small intestine requires specific commensal microbiota and is inhibited by treating mice with selective antibiotics. Mice from different sources had marked differences in their Th17 cell numbers and animals lacking Th17 cells acquired them after introduction of bacteria from Th17 cell-sufficient mice. Differentiation of Th17 cells correlated with the presence of cytophaga-flavobacter-bacteroidetes (CFB) bacteria in the intestine and was independent of toll-like receptor, IL-21 or IL-23 signaling, but required appropriate TGF-beta activation. Absence of Th17 cell-inducing bacteria was accompanied by increase in Foxp3+ regulatory T cells (Treg) in the LP. Our results suggest that composition of intestinal microbiota regulates the Th17:Treg balance in the LP and may thus influence intestinal immunity, tolerance, and susceptibility to inflammatory bowel diseases
PMCID:2597589
PMID: 18854238
ISSN: 1934-6069
CID: 93379
HIV immunology needs a new direction
Medzhitov, Ruslan; Littman, Dan
PMID: 18833256
ISSN: 1476-4687
CID: 137124
ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage
Egawa, Takeshi; Littman, Dan R
The transcription factor ThPOK is required and sufficient for the generation of CD4(+)CD8(-) thymocytes, yet the mechanism by which ThPOK orchestrates differentiation into the CD4(+) helper T cell lineage remains unclear. Here we used reporter mice to track the expression of transcription factors in developing thymocytes. Distal promoter-driven expression of the gene encoding the transcription factor Runx3 was restricted to major histocompatibility complex (MHC) class I-selected thymocytes. In ThPOK-deficient mice, such expression was derepressed in MHC class II-selected thymocytes, which contributed to their redirection to the CD8(+) T cell lineage. In the absence of both ThPOK and Runx, redirection was prevented and cells potentially belonging to the CD4(+) lineage, presumably specified independently of ThPOK, were generated. Our results suggest that MHC class II-selected thymocytes are directed toward the CD4(+) lineage independently of ThPOK but require ThPOK to prevent Runx-dependent differentiation toward the CD8(+) lineage
PMCID:2666788
PMID: 18776905
ISSN: 1529-2916
CID: 93366